Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Anodic oxidization (AO) is one of the most important methods available for fabricating mesoporous Al2O3, which can be conducted at either high potential or low potential; however, the need for an external electricity power source limits its applications. In this work, a novel self-powered electrochemical anodic oxidization (SPAO) system was introduced for preparing mesoporous Al2O3, by using newly-invented triboelectric nanogenerator (TENG) arrays driven by wind power. Using the controllable voltage output of the TENG arrays, the SPAO system was shown to regulate the pore depth and pore size of the mesoporous Al2O3. In contrast to traditional AO systems, this technique takes advantage of the high output voltage of TENG arrays without any additional energy costs. In addition, the SPAO system can be used for the preparation of other mesoporous materials.
Lu, Q. Y.; Gao, F.; Komarneni, S.; Mallouk, T. E. Ordered SBA-15 nanorod arrays inside a porous alumina membrane. J. Am. Chem. Soc. 2004, 126, 8650-8651.
Bagshaw, S. A.; Pinnavaia, T. J. Mesoporous alumina molecular sieves. Angew. Chem., Int. Ed. 1996, 35, 1102-1105.
Cabrera, S.; El Haskouri, J.; Alamo, J.; Beltrán, A.; Beltrán, D.; Mendioroz, S.; Marcos, D. M.; Amorós, P. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes. Adv. Mater. 1999, 11, 379-381.
Zhang, W. Z. Rare earth stabilization of mesoporous alumina molecular sieves assembled through an N0I0 pathway. Chem. Commun. 1998, 1185-1186.
Masuda, H.; Fukuda, F. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466-1468.
Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770-2772.
Montero-Moreno, J. M.; Belenguer, M.; Sarret, M.; Müller, C. M. Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques. Electrochimica Acta 2009, 54, 2529-2535.
Yanagishita, T.; Sasaki, M.; Nishio, K.; Masuda, H. Carbon nanotubes with a triangular cross-section, fabricated using anodic porous alumina as the template. Adv. Mater. 2004, 16, 429-432.
Nielsch, K.; Choi, J.; Schwim, K.; Wehrspohn, R. B.; Gösele, U. Self-ordering regimes of porous alumina: The 10 porosity rule. Nano Lett. 2002, 2, 677-680.
Jessensky, O.; Müller, F.; Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 1998, 72, 1173-1175.
Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater. 2006, 5, 741-747.
Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031-6037.
Wen, X. N.; Yang, W. Q.; Jing, Q. S.; Wang, Z. L. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. ACS Nano 2014, 8, 7405-7412.
Jing, Q. S.; Zhu, G.; Bai, P.; Xie, Y. N.; Chen, J.; Han, R. P. S.; Wang, Z. L. Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. ACS Nano 2014, 8, 3836-3842.
Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916-2923.
Hu, Y. F.; Yang, J.; Jing, Q. S.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 2013, 7, 10424-10432.
Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.
Guo, W. X.; Li, X. Y.; Chen, M. X.; Xu, L.; Dong, L.; Cao, X.; Tang, W.; Zhu, J.; Lin, C. J.; Pan, C. F. et al. Electrochemical cathodic protection powered by triboelectric nanogenerator. Adv. Funct. Mater. 2014, 24, 6691-6700.
Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272-276.
Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T.; Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217-225.
Zhu, H. R.; Tang, W.; Gao, C. Z.; Han, Y.; Li, T.; Cao, X.; Wang, Z. L. Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy 2015, 14, 193-200.
Fan, F. R.; Luo, J. J.; Tang, W.; Li, C. Y.; Zhang, C. P.; Tian, Z. Q.; Wang, Z. L. Highly transparent and flexible triboelectric nanogenerators: Performance improvements and fundamental mechanisms. J. Mater. Chem. A 2014, 2, 13219-13225.
Chu, S. Z.; Wada, K.; Inoue, S.; Isogai, M.; Yasumori, A. Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv. Mater. 2005, 17, 2115-2119.
Schwirn, K.; Lee, W.; Hillebrand, R.; Steinhart, M.; Nielsch, K.; Gösele, U. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano 2008, 2, 302-310.
Zhao, S.; Chan, K.; Yelon, A.; Veres, T. Novel structure of AAO film fabricated by constant current anodization. Adv. Mater. 2007, 19, 3004-3007.
Liu, J.; Liu, S.; Zhou, H. H.; Xie, C. J.; Huang, Z. Y.; Fu, C. P.; Kuang, Y. F. Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization and mild anodization. Thin Solid Films 2014, 552, 75-81.
Yang, W. Q.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y. J.; Jing, Q. S.; Cao, X.; Wang, Z. L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317-11324.
Li, D. D.; Zhao, L.; Jiang, C. H.; Lu, J. G. Formation of anodic aluminum oxide with serrated nanochannels. Nano Lett. 2010, 10, 2766-2771.
Chung, C. K.; Zhou, R. X.; Liu, T. Y.; Chang, W. T. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature. Nanotechnology 2009, 20, 055301.
Chung, C. K.; Chang, W. T.; Liao, M. W.; Chang, H. C. Effect of pulse voltage and aluminum purity on the characteristics of anodic aluminum oxide using hybrid pulse anodization at room temperature. Thin Solid Films 2011, 519, 4754-4758.
Xu, Y.; Thompson, G. E.; Wood, G. C. Mechanism of anodic film growth on aluminum. Trans. Inst. Met. Finish. 1985, 63, 98-103.
O'Sullivan, J. P.; Wood, G. C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. Roy. Soc. Lond. A. 1970, 317, 511-543.
Ono, S.; Saito, M.; Asoh, H. Self-ordering of anodic porous alumina induced by local current concentration: Burning. Electrochem. Solid State Lett. 2004, 7, B21-B24.
Ono, S.; Saito, M.; Ishiguro, M.; Asoh, H. Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 2004, 151, B473-B478.
Nandi, M.; Mondal, P.; Islam, M.; Bhaumik, A. Highly efficient hydroformylation of 1-hexene over an ortho -metallated rhodium (I) complex anchored on a 2D-hexagonal mesoporous material. Eur. J. Inorg. Chem. 2011, 2011, 221-227.
Dutta, A.; Mondal, J.; Patra, A. K.; Bhaumik, A. Synthesis and temperature-induced morphological control in a hybrid porous iron-phosphonate nanomaterial and its excellent catalytic activity in the synthesis of benzimidazoles. Chem. -Eur. J. 2012, 18, 13372-13378.