AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies

Xianli Liu§Jinwei Xu§Zhicheng Fang§Lin LinYu QianYoucheng WangChunmiao YeChao Ma( )Jie Zeng( )
Hefei National Laboratory for Physical Sciences at the MicroscaleKey Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of SciencesCenter of Advanced Nanocatalysis (CAN-USTC) & Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefeii230026China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Shape control has proven to be a powerful and versatile means of tailoring the properties of Bi2Se3 nanostructures for a wide variety of applications. Here, three different Bi2Se3 nanostructures, i.e., spiral-type nanoplates, smooth nanoplates, and dendritic nanostructures, were prepared by manipulating the supersaturation level in the synthetic system. This mechanism study indicated that, at low supersaturation, defects in the crystal growth could cause a step edge upon which Bi2Se3 particles were added continuously, leading to the formation of spiral-type nanoplates. At intermediate supersaturation, the aggregation of amorphous Bi2Se3 particles and subsequent recrystallization resulted in the formation of smooth nanoplates. Furthermore, at high supersaturation, polycrystalline Bi2Se3 cores formed initially, on which anisotropic growth of Bi2Se3 occurred. This work not only advances our understanding of the growth mechanism but also offers a new approach to control the morphology of Bi2Se3 nanostructures.

Electronic Supplementary Material

Download File(s)
12274_2015_861_MOESM1_ESM.pdf (3.2 MB)

References

1

Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194-198.

2

Hasan, M. Z.; Kane, C. L. Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.

3

Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv. Mater. 2012, 24, 5581-5585.

4

Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281-286.

5

Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057-1110.

6

Kong, D. S.; Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 2011, 3, 845-849.

7

Müchler, L.; Casper, F.; Yan, B. H.; Chadov, S.; Felser, C. Topological insulators and thermoelectric materials. Phys. Status Solidi RRL 2013, 7, 91-100.

8

Wyckoff, R. W. G. Crystal Structures; Krieger: Malabar, FL, 1986.

9

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.

10

Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398-402.

11

Zareapour, P.; Hayat, A.; Zhao, S. Y. F.; Kreshchuk, M.; Jain, A.; Kwok, D. C.; Lee, N.; Cheong, S. W.; Xu, Z. J.; Yang, A. et al. Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3. Nat. Commun. 2012, 3, 1056.

12

Sun, L. P.; Lin, Z. Q.; Peng, J.; Weng, J.; Huang, Y. Z.; Luo, Z. Q. Preparation of few-layer bismuth selenide by liquid-phase-exfoliation and its optical absorption properties. Sci. Rep. 2014, 4, 4794.

13

Zhang, X.; Wang, J.; Zhang, S. C. Topological insulators for high-performance terahertz to infrared applications. Phys. Rev. B 2011, 82, 245107.

14

Zhao, C. J.; Zou, Y. H.; Chen, Y.; Wang, Z. T.; Lu, S. B.; Zhang, H.; Wen, S. C.; Tang, D. Y. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express 2012, 20, 27888-27895.

15

Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

16

Sun, Y. F.; Cheng, H.; Gao, S.; Liu, Q. H.; Sun, Z. H.; Xiao, C.; Wu, C. Z.; Wei, S. Q.; Xie, Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 2012, 134, 20294-20297.

17

Soni, A.; Zhao, Y. Y.; Yu, L. G.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3–xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203-1209.

18

Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425-1429.

19

Yu, J. K.; Mitrovic, S.; Than, D.; Varghese, J.; Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 2010, 5, 718-721.

20

Son, J. S.; Park, K.; Han, M. K.; Kang, C.; Park, S. G.; Kim, J. H.; Kim, W.; Kim, S. J.; Hyeon, T. Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals. Angew. Chem., Int. Ed. 2011, 123, 1399-1402.

21

Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett. 2010, 10, 3037-3040.

22

Dirmyer, M. R.; Martin, J.; Nolas, G. S.; Sen, A.; Badding, J. V. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 2009, 5, 933-937.

23

Linder, J.; Yokoyama, T.; Sudbø, A. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B 2009, 80, 205401.

24

Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584-588.

25

Fan, H.; Zhang, S. X.; Ju, P.; Su, H. C.; Ai, S. Y. Flower-like Bi2Se3 nanostructures: Synthesis and their application for the direct electrochemistry of hemoglobin and H2O2 detection. Electrochim. Acta 2012, 64, 171-176.

26

Yao, J.; Koski, K. J.; Luo, W. D.; Cha, J. J.; Hu, L. B.; Kong, D. S.; Narasimhan, V. K.; Huo, K. F.; Cui, Y. Optical transmission enhacement through chemically tuned two-dimensional bismuth chalcogenide nanoplates. Nat. Commun. 2014, 5, 5670.

27

Xu, S.; Zhao, W. B.; Hong, J. M.; Zhu, J. J.; Chen, H. Y. Photochemical synthesis of Bi2Se3 nanosphere and nanorods. Mater. Lett. 2005, 59, 319-321.

28

Zhuang, A. W.; Zhao, Y. Z.; Liu, X. L.; Xu, M. R.; Wang, Y. C.; Jeong, U.; Wang, X. P.; Zeng, J. Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth. Nano Res. 2015, 8, 246-256.

29

Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J. S.; Kang, C. Y.; Jeong, U. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J. Am. Chem. Soc. 2012, 134, 2872-2875.

30

Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407-2414.

31

Sun, Z. L.; Liufu, S.; Chen, X. H.; Chen, L. D. Controllable synthesis and electrochemical hydrogen storage properties of Bi2Se3 architectural structures. Chem. Commun. 2010, 46, 3101-3103.

32

Zhuang, A. W.; Li, J. J.; Wang, Y. C.; Wen, X.; Lin, Y.; Xiang, B.; Wang, X. P.; Zeng, J. Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates. Angew. Chem., Int. Ed. 2014, 126, 6543-6547.

33

Zhou, J. H.; Zeng, J.; Grant, J.; Wu, H. K.; Xia, Y. N. On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies. Small 2011, 7, 3308-3316.

34

Jin, S.; Bierman, M. J.; Morin, S. A. A new twist on nanowire formation: Screw-dislocation-driven growth of nanowires and nanotubes. J. Phys. Chem. Lett. 2010, 1, 1472-1480.

35

Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969-971.

36

Hirth, J. P.; Lothe, J. Theory of Dislocations; MaGraw-Hill: New York, 1968.

37

Burton, W. K.; Cabrera, N.; Frank, F. C. Role of dislocations in crystal growth. Nature 1949, 163, 398-399.

38

Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947-7966.

39

Meng, F.; Morin, S. A.; Forticaux, A.; Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 2013, 46, 1616-1626.

40

Markov, I. V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy; World Scientific Publishing Co. Pte. Ltd. : Singapore, 1995.

41

Zhuo, R. F.; Feng, H. T.; Chen, J. T.; Yan, D.; Feng, J. J.; Li, H. J.; Geng, B. S.; Cheng, S.; Xu, X. Y.; Yan, P. X. Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures. J. Phys. Chem. C 2008, 112, 11767-11775.

42

Shevchenko, E. V.; Talapin, D. V.; Schnablegger, H.; Kornowski, A.; Festin, Ö.; Svedlindh, P.; Haase, M.; Weller, H. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: The role of nucleation rate in size control of CoPt3 nanocrystals. J. Am. Chem. Soc. 2003, 125, 9090-9101.

Nano Research
Pages 3612-3620
Cite this article:
Liu X, Xu J, Fang Z, et al. One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies. Nano Research, 2015, 8(11): 3612-3620. https://doi.org/10.1007/s12274-015-0861-4

765

Views

26

Crossref

N/A

Web of Science

26

Scopus

1

CSCD

Altmetrics

Received: 06 June 2015
Revised: 03 July 2015
Accepted: 12 July 2015
Published: 26 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return