AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag

Yanrui LiLeilei LiYunqi GongSong BaiHuanxin JuChengming WangQian XuJunfa ZhuJun Jiang( )Yujie Xiong( )
Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)School of Chemistry and Materials Science, and National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefei230026China
Show Author Information

Graphical Abstract

Abstract

A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of ~1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have straddling band structure alignments with TiO2, constituting an obstacle to forming the Z-scheme for photocatalytic hydrogen production. In this communication, we demonstrate Ag2S as a model system where the energy band upshift of the narrow-bandgap semiconductor that shares an interface with a metal can overcome this limitation. To fabricate the design, we developed a unique approach to synthesize Ag2S–Ag–TiO2 hybrid structures. The obtained ternary hybrid structures exhibited dramatically enhanced performance in photocatalytic hydrogen production under full-spectrum light illumination. The activities were significantly higher than the sum of those of Ag2S–Ag–TiO2 structures under λ < 400 nm and λ > 400 nm irradiation as well as those of their counterparts under any light illumination conditions.

Electronic Supplementary Material

Download File(s)
12274_2015_862_MOESM1_ESM.pdf (4.8 MB)

References

1

Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185-196.

2

Sayama, K.; Yoshida, R.; Kusama, H.; Okabe, K.; Abe, Y.; Arakawa, H. Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem. Phys. Lett. 1997, 277, 387-391.

3

Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. Chem. Commun. 2001, 2416-2417.

4

Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem. Lett. 2004, 33, 1348-1349.

5

Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486-1503.

6

Sasaki, Y.; Kato, H.; Kudo, A. [Co(bpy)3]3+/2+ and[Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J. Am. Chem. Soc. 2013, 135, 5441-5449.

7

Yun, H. J.; Lee, H.; Kim, N, D.; Lee, D. M.; Yu, S. J.; Yi, J. A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. ACS Nano 2011, 5, 4084-4890.

8

Liu, C.; Tang, J.; Chen, H. M.; Liu, B.; Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 2013, 13, 2989-2992.

9

Wang, X. W.; Liu, G.; Chen, Z. G.; Li, F.; Wang, L. Z.; Lu, G. Q.; Cheng, H. M. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun. 2009, 3452-3454.

10

Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, J. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782-786.

11

Xu, Y; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543-556.

12

Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893-2939.

13

Linsebigler, A. L.; Lu, G. Q.; Yates, Jr. J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-758.

14

Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259-1278.

15

Li, B.; Long, R.; Zhong, X. L.; Bai, Y.; Zhu, Z. J.; Zhang, X.; Zhi, M.; He, J. W.; Wang, C. M.; Li, Z. -Y. et al. Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. Small 2012, 8, 1710-1716.

16

Wu, X. F.; Song, H. Y.; Yoon, J. M.; Yu, Y. T.; Chen, Y. F. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 2009, 25, 6438-6447.

17

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

18

Pang, M. L.; Hu, J. Y.; Zeng, H. C. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 2010, 132, 10771-10785.

19

Jiang, F. R.; Tian, Q. W.; Tang, M. H.; Chen, Z. G.; Yang, J. M.; Hu, J. Q. One-pot synthesis of large-scaled janus Ag-Ag2S nanoparticles and their photocatalytic properties. CrystEngComm 2011, 13, 7189-7193.

20

Briggs, D.; Seah, M. P. Practical Surface Analysis; John Wiley & Sons: New York, 1993; vol. 1.

21

Ye, L. Q.; Liu, J. Y.; Gong, C. Q.; Tian, L. H.; Peng, T. Y.; Zan, L. Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge. ACS Catal. 2012, 2, 1677-1683.

22

Fang, C. H.; Lee, Y. H.; Shao, L.; Jiang, R. B.; Wang, J. F.; Xu, Q. H. Correlating the plasmonic and structural evolutions during the sulfidation of silver nanocubes. ACS Nano 2013, 7, 9354-9365.

23

Wiley, B. J.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y. N. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B. 2006, 110, 15666-15675.

24

Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 2008, 20, 110-117.

25

Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406-13413.

26

Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817-3823.

27

DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887-7891.

28

Bisquert, J.; Zaban, A.; Greenshtein, M. Mora-Seró, I. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J. Am. Chem. Soc. 2004, 126, 13550-13559.

Nano Research
Pages 3621-3629
Cite this article:
Li Y, Li L, Gong Y, et al. Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. Nano Research, 2015, 8(11): 3621-3629. https://doi.org/10.1007/s12274-015-0862-3

626

Views

64

Crossref

N/A

Web of Science

65

Scopus

8

CSCD

Altmetrics

Received: 27 April 2015
Revised: 26 June 2015
Accepted: 15 July 2015
Published: 30 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return