AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Perpendicular magnetic clusters with configurable domain structures via dipole–dipole interactions

Weimin Li1,2Seng Kai Wong2Tun Seng Herng1Lee Koon Yap2Cheow Hin Sim2Zhengchun Yang1Yunjie Chen2Jianzhong Shi2Guchang Han2Junmin Xue1Jun Ding1( )
Department of Materials Science and EngineeringNational University of SingaporeBLK EA#03-09, 9 Engineering Drive 1117576Singapore, Singapore
Data Storage InstituteAgency for ScienceTechnology and Research (A*STAR)DSI Building, 5 Engineering Drive 1117608Singapore, Singapore
Show Author Information

Graphical Abstract

Abstract

Magnetic single-domain islands based on in-plane anisotropy (usually, shape anisotropy) and their dipole-dipole interactions have been investigated extensively in recent years. This has been driven by potential applications in magnetic recording, spintronics, magneto-biology, etc. Here, we propose a concept of outof-plane magnetic clusters with configurable domain structures (multi-flux states) via dipole-dipole interactions. Their flux stages can be switched through an external magnetic field. The concept has been successfully demonstrated by patterned [Co/Pd] islands. A [Co/Pd] multilayer exhibits a large perpendicular anisotropy, a strong physical separation, and uniform intrinsic properties after being patterned into individual islands by electron beam lithography. A threeisland cluster with six stable flux states has been realized by optimizing island size, thickness, gap, anisotropy, saturation magnetization, etc. Using [Co/Pd] multilayers, we have optimized the island structure by tuning magnetic properties (saturation magnetization and perpendicular anisotropy) using Landau-Liftshitz-Gilbert (LLG) simulation/calculation. Potential applications have been proposed, including a flexi-programmable logic device with AND, OR, NAND, and NOR functionalities and a magnetic domino, which can propagate magnetic current as far as 1 μm down from the surface via vertical dipole-dipole interactions.

Electronic Supplementary Material

Download File(s)
12274_2015_864_MOESM1_ESM.pdf (5.7 MB)

References

1

Bovo, L.; Bloxsom, J. A.; Prabhakaran, D.; Aeppli G.; Bramwell, S. T. Brownian motion and quantum dynamics of magnetic monopoles in spin ice. Nat. Commun. 2013, 4, 1535.

2

Li, J.; Zhang, S.; Bartell, J.; Nisoli, C.; Ke, X.; Lammert, P. E.; Crespi, V. H.; Schiffer, P. Comparing frustrated and unfrustrated clusters of single-domain ferromagnetic islands. Phys. Rev. B 2010, 82, 134407.

3

den Hertog, B. C.; Gingras, M. J. P. Dipolar interactions and origin of spin ice in ising pyrochlore magnets. Phys. Rev. Lett. 2000, 84, 3430-3433.

4

Yavors'kii, T.; Fennell, T.; Gingras, M. J. P.; Bramwell, S. T. Dy2Ti2O7 spin ice: A test case for emergent clusters in a frustrated magnet. Phys. Rev. Lett. 2008, 101, 037204.

5

Wang, R. F.; Nisoli, C.; Freitas, R. S.; Li, J.; McConville, W.; Cooley, B. J.; Lund, M. S.; Samarth, N.; Leighton, C.; Crespi, V. H. et al. Artificial "spin ice" in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 2006, 439, 303-306.

6

Ladak, S.; Read, D. E.; Perkins, G. K.; Cohen, L. F.; Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 2010, 6, 359-363.

7

Ke, X. L.; Li, J.; Zhang, S.; Nisoli, C.; Crespi, V. H.; Schiffer, P. Tuning magnetic frustration of nanomagnets in triangular-lattice geometry. Appl. Phys. Lett. 2008, 93, 252504.

8

Han, Y. L. Phase-space networks of geometrically frustrated systems. Phys. Rev. E 2009, 80, 051102.

9

Li, J.; Ke, X.; Zhang, S.; Garand, D.; Nisoli, C.; Lammert, P.; Crespi, V. H.; Schiffer, P. Comparing artificial frustrated magnets by tuning the symmetry of nanoscale permalloy arrays. Phys. Rev. B 2010, 81, 092406.

10

Imre, A.; Csaba, G.; Ji, L.; Orlov, A.; Bernstein, G. H.; Porod, W. Majority logic gate for magnetic quantum-dot cellular automata. Science 2006, 311, 205-208.

11

Cowburn, R. P.; Welland, M. E. Room temperature magnetic quantum cellular automata. Science 2000, 287, 1466-1468.

12

Orlov, A.; Imre, A.; Csaba, G.; Ji, L.; Porod, W.; Bernstein, G. H. Magnetic quantum-dot cellular automata: Recent developments and prospects. J. Nanoelectr. Optoelectr. 2008, 3, 55-68.

13

Breitkreutz, S.; Kiermaier, J.; Eichwald, I.; Ju, X. M.; Csaba, G.; Schmitt-Landsiedel, D.; Becherer, M. Majority gate for nanomagnetic logic with perpendicular magnetic anisotropy. IEEE Trans. Magn. 2012, 48, 4336-4339.

14

Chang, L.; Frank, D. J.; Montoye, R. K.; Koester, S. J.; Ji, B. L.; Coteus, P. W.; Dennard, R. H.; Haensch, W. Practical strategies for power-efficient computing technologies. Proc. IEEE 2010, 98, 215-236.

15

Yang, J. K. W.; Jung, Y. S.; Chang, J. -B.; Mickiewicz, R. A.; Alexander Katz, A.; Ross, C. A.; Berggren, K. K. Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nat. Nanotechnol. 2010, 5, 256-260.

16

Li, W. M.; Yang, Y.; Chen, Y. J.; Huang, T. L.; Shi, J. Z.; Ding, J. Study of magnetization reversal of Co/Pd bit-patterned media by micro-magnetic simulation. J. Magn. Magn. Mater. 2012, 324, 1575-1580.

17

Chen, Y. J.; Huang, T. L.; Shi, J. Z.; Deng, J.; Ding, J.; Li, W. M.; Leong, S. H.; Zong, B. Y.; Ko, H. Y. Y.; Hu, S. B. et al. Individual bit island reversal and switching field distribution in perpendicular magnetic bit patterned media. J. Magn. Magn. Mater. 2012, 324, 264-268.

18

Li, W. M.; Huang, X. L.; Shi, J. Z.; Chen, Y. J.; Huang, T. L.; Ding, J. Angular dependence and temperature effect on switching field distribution of Co/Pd based bit patterned media. J. Appl. Phys. 2012, 111, 07B917.

19

Li, W. M.; Chen, Y. J.; Huang, T. L.; Xue, J. M.; Ding, J. Calculation of individual bit island switching field distribution in perpendicular magnetic bit patterned media. J. Appl. Phys. 2011, 109, 07B758.

20

Stinson, D. G.; Shin, S. C. Magnetization and anisotropy of Co/Pd multilayer thin films. J. Appl. Phys. 1990, 67, 4459-4461.

21

Stoner, E. C.; Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. Roy. Soc. Lond. 1948, 240, 599-642.

22

Street, R.; Woolley, J. C. A study of magnetic viscosity. Proc. Phys. Soc., Sect. A 1949, 62, 562-572.

23

Weller, D.; Moser, A.; Folks, L.; Best, M. E.; Lee, W.; Toney, M. F.; Schwickert, M. F. High Ku materials approach to 100 Gbits/in2. IEEE Trans. Magn. 2000, 36, 10-15.

24

Krone, P.; Makarov, D.; Schrefl, T.; Albrecht, M. Effect of the anisotropy distribution on the coercive field and switching field distribution of bit patterned media. J. Appl. Phys. 2009, 106, 103913.

25

Scholz, W.; Suess, D.; Schrefl, T.; Fidler, J. Micromagnetic simulation of magnetization reversal in small particles with surface anisotropy. J. Appl. Phys. 2004, 95, 6807-6809.

Nano Research
Pages 3639-3650
Cite this article:
Li W, Wong SK, Herng TS, et al. Perpendicular magnetic clusters with configurable domain structures via dipole–dipole interactions. Nano Research, 2015, 8(11): 3639-3650. https://doi.org/10.1007/s12274-015-0864-1

584

Views

4

Crossref

N/A

Web of Science

4

Scopus

2

CSCD

Altmetrics

Received: 11 March 2015
Revised: 09 July 2015
Accepted: 22 July 2015
Published: 13 October 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return