AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interlayer interactions in anisotropic atomically thin rhenium diselenide

Huan Zhao1,§Jiangbin Wu2,§Hongxia Zhong3,5Qiushi Guo4Xiaomu Wang4Fengnian Xia4Li Yang3Pingheng Tan2( )Han Wang1( )
Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
Department of PhysicsWashington University in St LouisSt LouisMO63130USA
Department of Electrical EngineeringYale UniversityNew HavenCT06511USA
State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

In this work, we study the interlayer phonon vibration modes, the layer-numberdependent optical bandgap, and the anisotropic photoluminescence (PL) spectra of atomically thin rhenium diselenide (ReSe2) for the first time. The ultralow frequency interlayer Raman spectra and the polarization-resolved high frequency Raman spectra in ReSe2 allow the identification of its layer number and crystal orientation. Furthermore, PL measurements show the anisotropic optical emission intensity of the material with its bandgap increasing from 1.26 eV in the bulk to 1.32 eV in the monolayer. The study of the layer-number dependence of the Raman modes and the PL spectra reveals relatively weak van der Waal's interaction and two-dimensional (2D) quantum confinement in the atomically thin ReSe2. The experimental observation of the intriguing anisotropic interlayer interaction and tunable optical transition in monolayer and multilayer ReSe2 establishes the foundation for further exploration of this material in the development of anisotropic optoelectronic devices functioning in the near-infrared spectrum, which is important for many applications in optical communication and infrared sensing.

Electronic Supplementary Material

Download File(s)
nr-8-11-3651_ESM.pdf (2 MB)

References

1

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

2

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

3

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. -J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

4

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

5

Lee, Y. -H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C. -T.; Huang, J. -K.; Chang, M. -T.; Chang, C. -S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852–1857.

6

Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.

7

Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.

8

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

9

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

10

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

11

Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

12

Wang, H.; Wang, X. M.; Xia, F. N.; Wang, L. H.; Jiang, H.; Xia, Q. F.; Chin, M. L.; Dubey, M.; Han, S. -J. Black phosphorus radio-frequency transistors. Nano Lett. 2014, 14, 6424–6429.

13

Haratipour, N.; Robbins, M. C.; Koester, S. J. Black phosphorus p-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electr. Device Lett. 2015, 36, 411–413.

14

Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguideintegrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 2015, 9, 247–252.

15

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

16

Low, T.; Rodin, A. S.; Carvalho, A.; Jiang, Y. J.; Wang, H.; Xia, F. N.; Neto, A. H. C. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 2014, 90, 075434.

17

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 2014, 8, 899–907.

18
Zhao, H.; Guo, Q. S.; Xia, F. N.; Wang, H. Two-dimensional materials for nanophotonics application. Nanophotonics, in press, DOI: 10.1515/nanoph-2014-0022.https://doi.org/10.1515/nanoph-2014-0022
19

Fei, R. X.; Faghaninia, A.; Soklaski, R.; Yan, J. -A.; Lo, C.; Yang, L. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 2014, 14, 6393–6399.

20

Lamfers, H. -J.; Meetsma, A.; Wiegers, G.; De Boer, J. The crystal structure of some rhenium and technetium dichalcogenides. J. Alloy. Compd. 1996, 241, 34–39.

21

Kertesz, M.; Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106, 3453–3460.

22

Fang, C. M.; Wiegers, G. A.; Haas, C.; De Groot, R. A. Electronic structures of ReS2, ReS2 and TcS2 in the real and the hypothetical undistorted structures. J. Phys. : Condens. Matter 1997, 9, 4411–4424.

23

Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. -B.; Li, S. -S.; Li, J. B.; Wei, S. -H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226–7231.

24

Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. -S.; Ho, C. -H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

25

Friemelt, K.; Lux-Steiner, M. C.; Bucher, E. Optical properties of the layered transition-metal-dichalcogenide ReS2: Anisotropy in the van der Waals plane. J. Appl. Phys. 1993, 74, 5266–5268.

26

Ho, C. H.; Huang, Y. S.; Tiong, K. K.; Liao, P. C. Absorptionedge anisotropy in ReS2 and ReSe2 layered semiconductors. Phys. Rev. B 1998, 58, 16130–16135.

27

Ho, C. H.; Huang, Y. S.; Tiong, K. K. In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J. Alloy. Compd. 2001, 317–318, 222–226.

28

Ho, C. -H. Dichroic electro-optical behavior of rhenium sulfide layered crystal. Crystal Struct. Theory Appl. 2013, 2, 65–69.

29

Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. -S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

30

Jian, Y. -C.; Lin, D. -Y.; Wu, J. -S.; Huang, Y. -S. Optical and electrical properties of Au- and Ag-doped ReSe2. Jpn. J. Appl. Phys. 2013, 52, 04CH06.

31

Kao, Y. -C.; Huang, T.; Lin, D. -Y.; Huang, Y. -S.; Tiong, K. -K.; Lee, H. -Y.; Lin, J. -M.; Sheu, H. -S.; Lin, C. -M. Anomalous structural phase transition properties in ReSe2 and Au-doped ReSe2. J. Chem. Phys. 2012, 137, 024509.

32

Yang, S. X.; Tongay, S.; Yue, Q.; Li, Y. T.; Li, B.; Lu, F. Y. High-performance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep. 2014, 4, 5442.

33

Pickett, W. E. Pseudopotential methods in condensed matter applications. Comput. Phys. Rep. 1989, 9, 115–197.

34

Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

35

Alcock, N. W.; Kjekshus, A. The crystal structure of ReSe2. Acta Chem. Scand. 1965, 19, 79–94.

36

Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N. et al. The shear mode of multilayer graphene. Nat Mater 2012, 11, 294–300.

37

Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.

38

Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

39

Tan, P. -H.; Wu, J. -B.; Han, W. -P.; Zhao, W. -J.; Zhang, X.; Wang, H.; Wang, Y. -F. Ultralow-frequency shear modes of 2-4 layer graphene observed in scroll structures at edges. Phys. Rev. B 2014, 89, 235404.

40
Ling, X.; Liang, L. B.; Huang, S. X.; Puretzky, A. A.; Geohegan, D. B.; Sumpter, B. G.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Observation of low-frequency interlayer breathing modes in few-layer black phosphorus. 2015, arXiv: materials science/1502.07804. arXiv. org e-Print archive. http://archiv.org/abs/1502.07804.
41

Wu, J. -B.; Zhang, X.; Ijäs, M.; Han, W. -P.; Qiao, X. -F.; Li, X. -L.; Jiang, D. -S.; Ferrari, A. C.; Tan, P. -H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.

42

Zhang, X.; Qiao, X. -F.; Shi, W.; Wu, J. -B.; Jiang, D. -S.; Tan, P. -H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

43

Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.

44

Li, X. L.; Qiao, X. F.; Han, W. -P.; Lu, Y.; Tan, Q. -H.; Liu, X. -L.; Tan, P. H. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates. Nanoscale 2015, 7, 8135–8141.

45

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

46

Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

47

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

48

Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

49

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. -H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. Acs Nano 2012, 7, 791–797.

50

Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. -Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

51
Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. 2014, arXiv: mesoscale and nanoscale physics/1411.1695. arXiv. org e-Print archive. http://archiv.org/abs/1411.1695.
52

Li, Z.; Chang, S. -W.; Chen, C. -C.; Cronin, S. B. Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating. Nano Res. 2014, 7, 973–980.

Nano Research
Pages 3651-3661
Cite this article:
Zhao H, Wu J, Zhong H, et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Research, 2015, 8(11): 3651-3661. https://doi.org/10.1007/s12274-015-0865-0
Part of a topical collection:

1150

Views

160

Crossref

N/A

Web of Science

160

Scopus

20

CSCD

Altmetrics

Received: 28 April 2015
Revised: 16 July 2015
Accepted: 22 July 2015
Published: 12 October 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return