AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers

Shuang Yan1Guangtao Zan2Qingsheng Wu1( )
Department of ChemistryKey Laboratory of Tobacco Industry Cigarette Smoke (Shanghai Tobacco Group Co. Ltd.)Tongji UniversityShanghai200092China
School of Materials Science and EngineeringTongji UniversityShanghai200092China
Show Author Information

Graphical Abstract

Abstract

A process for synthesizing Fe2O3 based on electrospinning and the hard-template method was proposed such that the crystal phase of Fe2O3 could be tailored with precision. Mesoporous γ-Fe2O3, α-/γ-Fe2O3, and α-Fe2O3 nanofibers could be fabricated successfully by changing the synthesis parameters. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction analyses, Raman spectroscopy, and nitrogen adsorption–desorption analyses were used to characterize the structures of the synthesized products. The optimal calcination conditions for preparing α-/γ-Fe2O3 nanofibers with the highest ethanol response were determined through ethanol-sensing measurements. The mixed-phase material exhibited a significantly higher sensitivity than the corresponding purephase ones. The superior ethanol-sensing performance of the α-/γ-Fe2O3 nanofibers suggested that they may be suitable for use in alcohol sensing. Hence, a novel strategy for improving the sensing performance of metal oxide semiconductors is to assemble the different crystalline forms of the same metal oxide in one structure. Finally, the mechanism responsible for the sensing performance of α-/γ-Fe2O3 being higher than those of γ-Fe2O3 and α-Fe2O3 was elucidated on the basis of data from X-ray photoelectron spectroscopy and resistance measurements.

Electronic Supplementary Material

Download File(s)
nr-8-11-3673_ESM.pdf (1 MB)

References

1

Janata, J.; Josowicz, M.; Devaney, D. M. Chemical sensors. Anal. Chem. 1994, 66, 207R–228R.

2

Kim, I. D.; Rothschild, A. Nanostructured metal oxide gas sensors prepared by electrospinning. Polym. Adv. Technol. 2011, 22, 318–325.

3

Shi, L.; Naik, A. J. T.; Goodall, J. B. M.; Tighe, C.; Gruar, R.; Binions, R.; Parkin, I.; Darr, J. Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: Size and shape control using a continuous hydrothermal pilot plant. Langmuir 2013, 29, 10603–10609.

4

Yang, Y.; Ma, H. X.; Zhuang, J.; Wang, X. Morphologycontrolled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg. Chem. 2011, 50, 10143–10151.

5

Song, X. L.; Xu, S. F.; Chen, L. X.; Wei, Y. Q.; Xiong, H. Recent advances in molecularly imprinted polymers in food analysis. J. Appl. Polym. Sci. 2014, 131, 40766.

6

Cummins, E. P.; Selfridge, A. C.; Sporn, P. H.; Sznajder, J. I.; Taylor, C. T. Carbon dioxide-sensing in organisms and its implications for human disease. Cell. Mol. Life Sci. 2014, 71, 831–845.

7

Wang, C. X.; Cai, D. P.; Liu, B.; Li, H.; Wang, D. D.; Liu, Y.; Wang, L. L.; Wang, Y. R.; Li, Q. H.; Wang, T. H. Ethanolsensing performance of tin dioxide octahedral nanocrystals with exposed high-energy {111} and {332} facets. J. Mater. Chem. A 2014, 2, 10623–10628.

8

Kim, D. H.; Shim, Y. S.; Moon, H. G.; Chang, H. J.; Su, D.; Kim, S. Y.; Kim, J. S.; Ju, B. K.; Yoon, S. J.; Jang, H. W. Highly ordered TiO2 nanotubes on patterned substrates: Synthesis-in-place for ultrasensitive chemiresistors. J. Phys. Chem. C 2013, 117, 17824–17831.

9

Alenezi, M. R.; Alshammari, A. S.; Jayawardena, K. D. G. I.; Beliatis, M. J.; Henley, S. J.; Silva, S. R. P. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 2013, 117, 17850–17858.

10

Long, N. V.; Yang, Y.; Yuasa, M.; Thi, C. M.; Cao, Y. Q.; Nann, T.; Nogami, M. Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Adv. 2014, 4, 8250–8255.

11

Epifani, M.; Comini, E.; Díaz, R.; Andreu, T.; Genç, A.; Arbiol, J.; Siciliano, P.; Faglia, G.; Morante, J. R. Solvothermal, chloroalkoxide-based synthesis of monoclinic WO3 quantum dots and gas-sensing enhancement by surface oxygen vacancies. ACS Appl. Mater. Interfaces 2014, 6, 16808–16816.

12

Jin, W.; Yan, S. L.; An, L.; Chen, W.; Yang, S.; Zhao, C. X.; Dai, Y. Enhancement of ethanol gas sensing response based on ordered V2O5 nanowire microyarns. Sens. Actuators BChem. 2015, 206, 284–290.

13

Zhou, X.; Feng, W.; Wang, C.; Hu, X. L.; Li, X. W.; Sun, P.; Shimanoe, K.; Yamazoe, N.; Lu, G. Y. Porous ZnO/ZnCo2O4 hollow spheres: Synthesis, characterization, and applications in gas sensing. J. Mater. Chem. A 2014, 2, 17683–17690.

14

Mou, X. L.; Wei, X. J.; Li, Y.; Shen, W. J. Tuning crystalphase and shape of Fe2O3 nanoparticles for catalytic applications. CrystEngComm 2012, 14, 5107–5120.

15

Jørgensen, J. E.; Mosegaard, L.; Thomsen, L. E.; Jensen, T. R.; Hanson, J. C. Formation of α-Fe2O3 nanoparticles and vacancy ordering: An in situ X-ray powder diffraction study. J. Solid State Chem. 2007, 180, 180–185.

16

Jia, C. J.; Sun, L. D.; Luo, F.; Han, X. D.; Heyderman, L. J.; Yan, Z. G.; Yan, C. H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968–16977.

17

He, J. J.; Rao, X. H.; Yang, C.; Wang, J. D.; Su, X. T.; Niu, C. G. Glucose-assisted synthesis of mesoporous maghemite nanoparticles with enhanced gas sensing properties. Sens. Actuators B-Chem. 2014, 201, 213–221.

18

Sun, P.; Zhu, Z.; Zhao, P. L.; Liang, X. S.; Sun, Y. F.; Liu, F. M.; Lu, G. Y. Gas sensing with hollow α-Fe2O3 urchin-like spheres prepared via template-free hydrothermal synthesis. CrystEngComm 2012, 14, 8335–8337.

19

Wang, L. L.; Fei, T.; Lou, Z.; Zhang, T. Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: Synthesis and ethanol-sensing properties. ACS Appl. Mater. Interfaces 2011, 3, 4689–4694.

20

Sarkar, D.; Mandal, M.; Mandal, K. Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons. ACS Appl. Mater. Interfaces 2013, 5, 11995–12004.

21

Biswal, R. C. Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens. Actuators B-Chem. 2011, 157, 183–188.

22

Gunawan, P.; Mei, L.; Teo, J.; Ma, J. M.; Highfield, J.; Li, Q. H.; Zhong, Z. Y. Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir 2012, 28, 14090–14099.

23

Zhang, S. F.; Ren, F.; Wu, W.; Zhou, J.; Xiao, X. H.; Sun, L. L.; Liu, Y.; Jiang, C. Z. Controllable synthesis of recyclable core-shell α-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. Phys. Chem. Chem. Phys. 2013, 15, 8228–8236.

24

Wang, Y. S.; Wang, S. R.; Zhang, H. X.; Gao, X. L.; Yang, J. D.; Wang, L. W. Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application. J. Mater. Chem. A 2014, 2, 7935–7943.

25

Sen, T.; Shimpi, N. G.; Mishra, S.; Sharma, R. Polyaniline/α-Fe2O3 nanocomposite for room temperature LPG sensing. Sens. Actuators B-Chem. 2014, 190, 120–126.

26

Navale, S. T.; Khuspe, G. D.; Chougule, M. A.; Patil, V. B. Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 2014, 4, 27998–28004.

27

Ming, J.; Wu, Y. Q.; Wang, L. Y.; Yu, Y. C.; Zhao, F. Y. CO2-assisted template synthesis of porous hollow bi-phase γ-/α-Fe2O3 nanoparticles with high sensor property. J. Mater. Chem. 2011, 21, 17776–17782.

28

Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. Onedimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

29

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Roomtemperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

30

Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656.

31

Arafat, M. M.; Dinan, B.; Akbar, S. A.; Haseeb, A. S. M. A. Gas sensors based on one dimensional nanostructured metaloxides: A review. Sensors 2012, 12, 7207–7258.

32

Neghlani, P. K.; Rafizadeh, M.; Taromi, F. A. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers. J. Hazard. Mater. 2011, 186, 182–189.

33

Zhou, Z. P.; Lai, C. L.; Zhang, L. F.; Qian, Y.; Hou, H. Q.; Reneker, D. H.; Fong, H. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 2009, 50, 2999–3006.

34

Darezereshki, E.; Bakhtiari, F.; Vakylabad, A. B.; Hassani, Z. Single-step synthesis of activated carbon/γ-Fe2O3 nanocomposite at room temperature. Mater. Sci. Semicond. Process. 2013, 16, 221–225.

35

Liu, S. L.; Zhou, J. P.; Zhang, L. N. Effects of crystalline phase and particle size on the properties of plate-like Fe2O3 nanoparticles during γ- to α-phase transformation. J. Phys. Chem. C 2011, 115, 3602–3611.

36

El Mendili, Y.; Bardeau, J. F.; Randrianantoandro, N.; Grasset, F.; Greneche, J. M. Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation. J. Phys. Chem. C 2012, 116, 23785–23792.

37

de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878.

38

Soler, M. A. G.; Alcantara, G. B.; Soares, F. Q.; Viali, W. R.; Sartoratto, P. P. C.; Fernandez, J. R. L.; da Silva, S. W.; Garg, V. K.; Oliveira, A. C.; Morais, P. C. Study of molecular surface coating on the stability of maghemite nanoparticles. Surf. Sci. 2007, 601, 3921–3925.

39

Cheng, Y. H.; Kang, Y. F.; Wang, L. W.; Wang, Y.; Wang, S. R.; Li, Y. J.; Zhong, W.; Peng, L. Q. Preparation of porous α-Fe2O3-supported Pt and its sensing performance to volatile organic compounds. J. Nat. Gas Chem. 2012, 21, 11–16.

40

Gao, J.; Wang, L. L.; Kan, K.; Xu, S.; Jing, L. Q.; Liu, S. Q.; Shen, P. K.; Li, L.; Shi, K. Y. One-step synthesis of mesoporous Al2O3-In2O3 nanofibres with remarkable gassensing performance to NOx at room temperature. J. Mater. Chem. A 2014, 2, 949–956.

41

Yang, G. J.; Gao, D. Q.; Zhang, J. L.; Zhang, J.; Shi, Z. H.; Xue, D. S. Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al2O3 nanoparticles. J. Phys. Chem. C 2011, 115, 16814–16818.

42

Jin, J.; Fu, L. J.; Ouyang, J.; Yang, H. M. 3D ordered macromesoporous indium doped Al2O3. CrystEngComm 2013, 15, 6046–6053.

43

Vuong, N. M.; Jung, H.; Kim, D.; Kim, H.; Hong, S. K. Realization of an open space ensemble for nanowires: A strategy for the maximum response in resistive sensors. J. Mater. Chem. 2012, 22, 6716–6725.

44

Bonu, V.; Das, A.; Prasad, A. K.; Krishna, N. G.; Dhara, S.; Tyagi, A. K. Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures. Appl. Phys. Lett. 2014, 105, 243102.

45

Carter, E.; Carley, A. F.; Murphy, D. M. Evidence for O–2 radical stabilization at surface oxygen vacancies on polycrystalline TiO2. J. Phys. Chem. C 2007, 111, 10630–10638.

Nano Research
Pages 3673-3686
Cite this article:
Yan S, Zan G, Wu Q. An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers. Nano Research, 2015, 8(11): 3673-3686. https://doi.org/10.1007/s12274-015-0867-y

620

Views

18

Crossref

N/A

Web of Science

22

Scopus

3

CSCD

Altmetrics

Received: 19 May 2015
Revised: 06 July 2015
Accepted: 17 July 2015
Published: 20 October 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return