Graphical Abstract

The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. Interestingly, anelasticity was consistently observed after stress release. Further investigations indicate that the anelasticity is intrinsic to the CuO NWs, although electronbeam irradiation was proved capable of accelerating the shape recovery. A mechanism based on the cooperative motion of twin-associated atoms is proposed to account for this phenomenon. The results provide insight into the mechanical properties of CuO NWs, which are promising materials for nanoscale damping systems.
Millar, R. W. The heat capacities at low temperatures of "ferrous oxide, " magnetite and cuprous and cupric oxides. J. Am. Chem. Soc. 1929, 51, 215–222.
Polyakov, B.; Dorogin, L. M.; Vlassov, S.; Antsov, M.; Kulis, P.; Kink, I.; Lohmus, R. In situ measurements of ultimate bending strength of CuO and ZnO nanowires. Eur. Phys. J. B 2012, 85, 366–371.
Xue, X. Y.; Xing, L. L.; Chen, Y. J.; Shi, S. L.; Wang, Y. G.; Wang, T. H. Synthesis and H2S sensing properties of CuO-SnO2 core/shell PN-junction nanorods. J. Phys. Chem. C 2008, 112, 12157–12160.
Yoon, J. H.; Kim, J. S. Gas sensing properties of nanocrystalline SnO2-CuO compounds. Met. Mater. Int. 2010, 16, 773–777.
Wang, P.; Zhao, X. H.; Li, B. J. ZnO-coated CuO nanowire arrays: Fabrications, optoelectronic properties, and photovoltaic applications. Opt. Express 2011, 19, 11271–11279.
Yan, H.; Liu, X. W.; Xu, R.; Lv, P.; Zhao, P. H. Synthesis, characterization, electrical and catalytic properties of CuO nanowires. Mater. Res. Bull. 2013, 48, 2102–2105.
Brenner, S. S. Tensile strength of whiskers. J. Appl. Phys. 1956, 27, 1484–1491.
Wang, L. H.; Liu, P.; Guan, P. F.; Yang, M. J.; Sun, J. L.; Cheng, Y. Q.; Hirata, A.; Zhang, Z.; Ma, E.; Chen, M. W. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nat. Commun. 2013, 4, 2413.
Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426.
Yue, Y. H.; Liu, P.; Zhang, Z.; Han, X. D.; Ma, E. Approaching the theoretical elastic strain limit in copper nanowires. Nano Lett. 2011, 11, 3151–3155.
Vlassov, S.; Polyakov, B.; Dorogin, L. M.; Vahtrus, M.; Mets, M.; Antsov, M.; Saar, R.; Romanov, A. E.; Lõhmus, A.; Lõhmus, R. Shape restoration effect in Ag–SiO2 core–shell nanowires. Nano Lett. 2014, 14, 5201–5205.
Liang, H. Y.; Upmanyu, M.; Huang, H. C. Size-dependent elasticity of nanowires: Nonlinear effects. Phys. Rev. B 2005, 71, 241403.
Zheng, H.; Liu, Y.; Mao, S. X.; Wang, J. B.; Huang, J. Y. Beam-assisted large elongation of in situ formed Li2O nanowires. Sci. Rep. 2012, 2, 542.
Wang, Y. B.; Wang, L. F.; Joyce, H. J.; Gao, Q.; Liao, X. Z.; Mai, Y. W.; Tan, H. H.; Zou, J.; Ringer, S. P.; Gao, H. J. et al. Super deformability and Young's modulus of GaAs nanowires. Adv. Mater. 2011, 23, 1356–1360.
Tan, E. P. S.; Zhu, Y.; Yu, T.; Dai, L.; Sow, C. H.; Tan, V. B. C.; Lim, C. T. Crystallinity and surface effects on Young's modulus of CuO nanowires. Appl. Phys. Lett. 2007, 90, 163112.
Polyakov, B.; Vlassov, S.; Dorogin, L. M.; Kulis, P.; Kink, I.; Lohmus, R. The effect of substrate roughness on the static friction of CuO nanowires. Surf. Sci. 2012, 606, 1393–1399.
Zheng, X. J.; Zhu, L. L. Theoretical analysis of electric field effect on Young's modulus of nanowires. Appl. Phys. Lett. 2006, 89, 153100.
Han, X. D.; Zhang, Y. F.; Zheng, K.; Zhang, X. N.; Zhang, Z.; Hao, Y. J.; Guo, X. Y.; Yuan, J.; Wang, Z. L. Lowtemperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 2007, 7, 452–457.
Han, X. D.; Zheng, K.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Wang, Z. L. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 2007, 19, 2112–2118.
Jiang, X. C.; Herricks, T.; Xia, Y. N. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2002, 2, 1333–1338.
Cai, S. M.; Matsushita, T.; Fujii, H.; Shirai, K.; Nonomura, T.; Tatsuoka, H.; Hsu, C. W.; Wu, Y. J.; Chou, L. J. Growth of Cu-Oxide nanowires on Cu substrates by thermal annealing. e-J. Surf. Sci. Nanotech. 2012, 10, 175–179.
Zappa, D.; Comini, E.; Zamani, R.; Arbiol, J.; Morante, J. R.; Sberveglieri, G. Preparation of copper oxide nanowire-based conductometric chemical sensors. Sens. Actuators B: Chem. 2013, 182, 7–15.
Hansen, B. J.; Chan, H. I.; Lu, J.; Lu, G. H.; Chen, J. H. Short-circuit diffusion growth of long bi-crystal CuO nanowires. Chem. Phys. Lett. 2011, 504, 41–45.
Mema, R.; Yuan, L.; Du, Q. T.; Wang, Y. Q.; Zhou, G. W. Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 2011, 512, 87–91.
Zheng, K.; Han, X. D.; Wang, L. H.; Zhang, Y. F.; Yue, Y. H.; Qin, Y.; Zhang, X. N.; Zhang, Z. Atomic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires. Nano Lett. 2009, 9, 2471–2476.
Liu, Y. J.; Nakamura, T.; Dwivedi, G.; Valarezo, A.; Sampath, S. Anelastic behavior of plasma-sprayed zirconia coatings. J. Am. Ceram. Soc. 2008, 91, 4036–4043.
Lu, K.; Lu, L.; Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 2009, 324, 349–352.
Tanimoto, H.; Sakai, S.; Mizubayashi, H. Anelasticity of nanocrystalline metals. Mater. Sci. Eng. A 2004, 370, 135–141.
Ocelík, V.; Csach, K.; Kasardová, A.; Bengus, V. Z. Anelastic deformation processes in metallic glasses and activation energy spectrum model. Mater. Sci. Eng. A 1997, 226–228, 851–855.
Pan, L. S.; Horibe, S. Anelastic behaviour of zirconia ceramics under monotonic and cyclic loadings. Acta Mater. 1997, 45, 463–469.
Chen, C. Q.; Shi, Y.; Zhang, Y. S.; Zhu, J.; Yan, Y. J. Size dependence of Young's modulus in ZnO nanowires. Phys. Rev. Lett. 2006, 96, 075505.
Sakai, S.; Tanimoto, H.; Otsuka, K.; Yamada, T.; Koda, Y.; Kita, E.; Mizubayashi, H. Elastic behaviors of high density nanocrystalline gold prepared by gas deposition method. Scripta Mater. 2001, 45, 1313–1319.
Chen, B.; Gao, Q.; Wang, Y. B.; Liao, X. Z.; Mai, Y. W.; Tan, H. H.; Zou, J.; Ringer, S. P.; Jagadish, C. Anelastic behavior in GaAs semiconductor nanowires. Nano Lett. 2013, 13, 3169–3172.
Juan, J. S.; Nó, M. L.; Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 2009, 4, 415–419.
Wuttig, M.; Chun-Hung, L. Twinning pseudoelasticity in In-Tl. Acta Metall. 1983, 31, 1117–1122.
Lakki, A.; Schaller, R.; Carry, C.; Benoit, W. High temperature anelastic and viscoplastic deformation of finegrained MgO-doped Al2O3. Acta Mater. 1998, 46, 689–700.
Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.
Zheng, H.; Liu, Y.; Cao, F.; Wu, S. J.; Jia, S. F.; Cao, A. J.; Zhao, D. S.; Wang, J. B. Electron beam-assisted healing of nanopores in magnesium alloys. Sci. Rep. 2013, 3, 1920.