Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A scalable approach to obtaining high-density, large-area single-walled carbon nanotube (SWNT) arrays is essential for realizing the full potential of SWNTs in practical electronic devices; this is still a great challenge. Here, we report an improved synthetic method for large-area growth of ultra-high-density SWNT arrays on sapphire surfaces by combining Trojan catalysts (released from the substrate, to assure ultra-high density) with Mo nanoparticles (loaded on the surface, to stabilize the released Trojan catalysts) as cooperating catalysts. Dense and perfectly aligned SWNTs covered the entire substrate and the local density was as high as 160 tubes/μm. Field-effect transistors (FETs) built on such arrays gave an output current density of -488 μA/μm at the drain-source voltage (Vds) = the gate-source voltage (Vgs) =–2 V, corresponding to an on-conductance per width of 244 μS/μm. These results confirm the wide range of potential applications of Trojan-Mo catalysts in the structure-controlled growth of SWNTs.
Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.
Che, Y. C.; Chen, H. T.; Gui, H.; Liu, J.; Liu, B. L.; Zhou, C. W. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond. Sci. Technol. 2014, 29, 073001.
Kang, L. X.; Hu, Y.; Liu, L. L.; Wu, J. X.; Zhang, S. C.; Zhao, Q. C.; Ding, F.; Li, Q. W.; Zhang, J. Growth of closepacked semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett. 2015, 15, 403–409.
Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. -J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.
Franklin, A. D. Electronics: The road to carbon nanotube transistors. Nature 2013, 498, 443–444.
Wang, C.; Ryu, K.; Arco, L.; Badmaev, A.; Zhang, J. L.; Lin, X.; Che, Y. C.; Zhou, C. W. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Res. 2010, 3, 831–842.
Shulaker, M. M.; Wei, H.; Patil, N.; Provine, J.; Chen, H. -Y.; Wong, H. S. P.; Mitra, S. Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett. 2011, 11, 1881–1886.
Cao, Q.; Han, S. -J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.
Brady, G. J.; Joo, Y.; Wu, M. -Y.; Shea, M. J.; Gopalan, P.; Arnold, M. S. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 2014, 8, 11614–11621.
Cao, Q.; Han, S. -J.; Tulevski, G. S. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch. Nat. Commun. 2014, 5, 5071.
Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, J.; Kim, K.; Wang, H. L.; Sinclair, R.; Wong, H. S. P.; Bao, Z. Largearea assembly of densely aligned single-walled carbon nanotubes using solution shearing and their application to field-effect transistors. Adv. Mater. 2015, 27, 2656–2662.
Wang, Y. L.; Pillai, S. K. R.; Chan-Park, M. B. Highperformance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique. Small 2013, 9, 2960–2969.
Chen, Y. B.; Zhang, J. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications. Acc. Chem. Res. 2014, 47, 2273–2281.
Feng, C. Q.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Nanobarrierterminated growth of single-walled carbon nanotubes on quartz surfaces. Nano Res. 2009, 2, 768–773.
Chen, Y. B.; Zhang, Y. Y.; Hu, Y.; Kang, L. X.; Zhang, S. C.; Xie, H. H.; Liu, D.; Zhao, Q. C.; Li, Q. W.; Zhang, J. State of the art of single-walled carbon nanotube synthesis on surfaces. Adv. Mater. 2014, 26, 5898–5922.
Zhou, W. W.; Rutherglen, C.; Burke, P. J. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.
Zhang, Y. Y.; Zhang, Y.; Xian, X. J.; Zhang, J.; Liu, Z. F. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 2008, 112, 3849–3856.
Ding, L.; Zhou, W. W.; McNicholas, T. P.; Wang, J. Y.; Chu, H. B.; Li, Y.; Liu, J. Direct observation of the strong interaction between carbon nanotubes and quartz substrate. Nano Res. 2009, 2, 903–910.
Li, Y.; Cui, R. L.; Ding, L.; Liu, Y.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Peng, F.; Liu, J. How catalysts affect the growth of single-walled carbon nanotubes on substrates. Adv. Mater. 2010, 22, 1508–1515.
Zhou, W. W.; Ding, L.; Liu, J. Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Res. 2009, 2, 593–598.
He, M. S.; Duan, X. J.; Wang, X.; Zhang, J.; Liu, Z. F.; Robinson, C. Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface. J. Phys. Chem. B 2004, 108, 12665–12668.
Chen, Y. B.; Zhang, J. Diameter controlled growth of singlewalled carbon nanotubes from SiO2 nanoparticles. Carbon 2011, 49, 3316–3324.
Hong, S. W.; Banks, T.; Rogers, J. A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 2010, 22, 1826–1830.
Wu, B.; Geng, D. C.; Guo, Y. L.; Huang, L. P.; Chen, J. Y.; Xue, Y. Z.; Yu, G.; Liu, Y. Q.; Kajiura, H.; Li, Y. M. Ultrahigh density modulation of aligned single-walled carbon nanotube arrays. Nano Res. 2011, 4, 931–937.
Zhou, W. W.; Ding, L.; Yang, S.; Liu, J. Synthesis of highdensity, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 2011, 5, 3849–3857.
Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.
Hong, G.; Chen, Y. B.; Li, P.; Zhang, J. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts. Carbon 2012, 50, 2067–2082.
Ago, H.; Uehara, N.; Ikeda, K. -I.; Ohdo, R.; Nakamura, K.; Tsuji, M. Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized Raman spectroscopy. Chem. Phys. Lett. 2006, 421, 399–403.
An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.
Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.
Youn, S. K.; Park, H. G. Morphological evolution of Fe–Mo bimetallic catalysts for diameter and density modulation of vertically aligned carbon nanotubes. J. Phys. Chem. C 2013, 117, 18657–18665.
Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.
Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.
Homma, Y.; Suzuki, S.; Kobayashi, Y.; Nagase, M.; Takagi, D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Appl. Phys. Lett. 2004, 84, 1750–1752.
Petit, P.; Salem, D.; He, M. S.; Paillet, M.; Parret, R.; Sauvajol, J. -L.; Zahab, A. Study of the thermal stability of supported catalytic nanoparticles for the growth of singlewalled carbon nanotubes with narrow diameter distribution by chemical vapor deposition of methane. J. Phys. Chem. C 2012, 116, 24123–24129.
Lin, M.; Ying Tan, J. P.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. -L. Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 2006, 6, 449–452.
Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. -Q.; Xu, Z.; Peng, F. et al. Chiralityspecific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.
He, Y. J.; Li, D. Q.; Li, T. Y.; Lin, X. Y.; Zhang, J.; Wei, Y.; Liu, P.; Zhang, L. N.; Wang, J. P.; Li, Q. Q. et al. Metalfilm-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Res. 2014, 7, 981–989.
Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.
Fu, Q.; Wagner, T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 2007, 62, 431–498.
Campbell, C. T. Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf. Sci. Rep. 1997, 27, 1–111.
Zhao, M. -Q.; Zhang, Q.; Zhang, W.; Huang, J. -Q.; Zhang, Y. H.; Su, D. S.; Wei, F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 2010, 132, 14739–14741.
Amama, P. B.; Pint, C. L.; Kim, S. M.; McJilton, L.; Eyink, K. G.; Stach, E. A.; Hauge, R. H.; Maruyama, B. Influence of alumina type on the evolution and activity of aluminasupported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 2010, 4, 895–904.
Peng, L. -M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442.
Ding, L.; Wang, Z. X.; Pei, T.; Zhang, Z. Y.; Wang, S.; Xu, H. L.; Peng, F.; Li, Y.; Peng, L. -M. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. ACS Nano 2011, 5, 2512–2519.