AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering

Lei Feng§Renping Ma§Yandong WangDaren XuDongyang XiaoLingxiao LiuNan Lu( )
State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchun130012China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Improving hot-spot intensity is a key issue in surface-enhanced Raman scattering (SERS). The bowtie nanoantenna (BNA) is an effective device used to concentrate light energy into a nanoscale volume and produce strong hot spots. Nanosphere lithography (NSL) is a large-area and low-cost technique to produce BNA arrays; however, the SERS activity of NSL-fabricated BNAs is limited. In this paper, we present a simple method to improve the SERS activity of conventional NSL-fabricated BNAs by modifying their geometry. The new configuration is termed "silver-coated elevated bowtie nanoantenna" (SCEBNA). SCEBNAs perform intensive near-field enhancement in the gap cavities owing to the integrated contribution of the "lightning rod" effect, resonance coupling, and the formation of the plasmonic Fabry–Pérot cavity. Experimental measurements and finite-difference time-domain simulations revealed that the hot-spot intensity and the substrate enhancement factor can be optimized by adjusting the silver thickness. The optimal sample has the capability of trace-amount detection with fine reproducibility.

Electronic Supplementary Material

Download File(s)
nr-8-11-3715_ESM.pdf (1.6 MB)

References

1

Natan, M. J. Concluding remarks: Surface enhanced Raman scattering. Faraday Discuss. 2006, 132, 321–328.

2

Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G. SERS as a foundation for nanoscale, optically detected biological labels. Adv. Mater. 2007, 19, 3100–3108.

3

Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599.

4

Morton, S. M.; Silverstein, D. W.; Jensen, L. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 2011, 111, 3962–3994.

5

Kleinman, S. L.; Frontiera, R. R.; Henry, A. I.; Dieringer, J. A.; Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36.

6

Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.

7

Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; Xu, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

8

Huang, J. A.; Zhao, Y. Q.; Zhang, X. J.; He, L. F.; Wong, T. L.; Chui, Y. S.; Zhang, W. J.; Lee, S. T. Ordered Ag/Si nanowires array: Wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett. 2013, 13, 5039–5045.

9
Stockman, M. I. Electromagnetic theory of SERS. In Surfaceenhanced Raman Scattering: Physics and Applications; Kneipp, K.; Moskovits, M.; Kneipp, H., Eds.; Springer-Verlag: Berlin, Heidelberg, 2006; pp 47–65.
10

Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.

11

Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911.

12

Fang, Y.; Seong, N. H.; Dlott, D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388–392.

13

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

14

Novotny, L.; van Hulst, N. Antennas for light. Nat. Photonics 2011, 5, 83–90.

15

Liang, Z. Q.; Sun, J.; Jiang, Y. Y.; Jiang, L.; Chen, X. D. Plasmonic enhanced optoelectronic devices. Plasmonics 2014, 9, 859–866.

16

Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Mü llen, K.; Moerner, W. E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 2009, 3, 654–657.

17

Hatab, N. A.; Hsueh, C. H.; Gaddis, A. L.; Retterer, S. T.; Li, J. H.; Eres, G.; Zhang, Z. Y.; Gu, B. H. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010, 10, 4952–4955.

18

Dai, Z. G.; Xiao, X. H.; Liao, L.; Zheng, J. F.; Mei, F.; Wu, W.; Ying, J. J.; Ren, F.; Jiang, C. Z. Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection. Appl. Phys. Lett. 2013, 103, 041903.

19

Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J.; Li, S. Z.; Xiong, Q. H. Optimizing electromagnetic hotspots in plasmonic bowtie nanoantennae. J. Phys. Chem. Lett. 2013, 4, 496–501.

20

Hanke, T.; Krauss, G.; Träutlein, D.; Wild, B.; Bratschitsch, R.; Leitenstorfer, A. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle nearinfrared pulses. Phys. Rev. Lett. 2009, 103, 257404.

21

Ko, K. D.; Kumar, A.; Fung, K. H.; Ambekar, R.; Liu, G. L.; Fang, N. X.; Toussaint, K. C. Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett. 2011, 11, 61–65.

22

Suh, J. Y.; Huntington, M. D.; Kim, C. H.; Zhou, W.; Wasielewski, M. R.; Odom, T. W. Extraordinary nonlinear absorption in 3D bowtie nanoantennas. Nano Lett. 2012, 12, 269–274.

23

Roxworthy, B. J.; Ko, K. D.; Kumar, A.; Fung, K. H.; Chow, E. K.; Liu, G. L.; Fang, N. X.; Toussaint, K. C., Jr. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 2012, 12, 796–801.

24

Salmistraro, M.; Schwartzberg, A.; Bao, W.; Depero, L. E.; Weber-Bargioni, A.; Cabrini, S.; Alessandri, I. Triggering and monitoring plasmon-enhanced reactions by optical nanoantennas coupled to photocatalytic beads. Small 2013, 9, 3301–3307.

25

Nicoli, F.; Verschueren, D.; Klein, M.; Dekker, C.; Jonsson, M. P. DNA translocations through solid-state plasmonic nanopores. Nano Lett. 2014, 14, 6917–6925.

26

Fromm, D. P.; Sundaramurthy, A.; Schuck, P. J.; Kino, G.; Moerner, W. E. Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible. Nano Lett. 2004, 4, 957–961.

27

Liow, C.; Meng, F. B.; Chen, X. D.; Li, S. Z. Dependence of plasmonic properties on electron densities for various coupled Au nanostructures. J. Phys. Chem. C 2014, 118, 27531–27538.

28

Novotny, L.; Bian, R. X.; Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 1997, 79, 645–648.

29

Gramotnev, D. K.; Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics 2013, 8, 13–22.

30

Halas, N. J.; Lal, S.; Link, S.; Chang, W. S.; Natelson, D.; Hafner, J. H.; Nordlander, P. A plethora of plasmonics from the laboratory for nanophotonics at Rice University. Adv. Mater. 2012, 24, 4842–4877, 4774.

31

Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.; Kino, G. S.; Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 2005, 94, 017402.

32

Liaw, J. -W. Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1441–1447.

33

Sundaramurthy, A.; Schuck, P. J.; Conley, N. R.; Fromm, D. P.; Kino, G. S.; Moerner, W. E. Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 2006, 6, 355–360.

34

Merlein, J.; Kahl, M.; Zuschlag, A.; Sell, A.; Halm, A.; Boneberg, J.; Leiderer, P.; Leitenstorfer, A.; Bratschitsch, R. Nanomechanical control of an optical antenna. Nat. Photonics 2008, 2, 230–233.

35

Li, A. R.; Li, S. Z. Large-volume hot spots in gold spiky nanoparticle dimers for high-performance surface-enhanced spectroscopy. Nanoscale 2014, 6, 12921–12928.

36

Zhang, Z.; Weber-Bargioni, A.; Wu, S. W.; Dhuey, S.; Cabrini, S.; Schuck, P. J. Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Lett. 2009, 9, 4505–4509.

37

Dmitriev, A.; Hägglund, C.; Chen, S.; Fredriksson, H.; Pakizeh, T.; Käll, M.; Sutherland, D. S. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett. 2008, 8, 3893–3898.

38

Shen, Y.; Zhou, J. H.; Liu, T. R.; Tao, Y. T.; Jiang, R. B.; Liu, M. X.; Xiao, G. H.; Zhu, J. H.; Zhou, Z. K.; Wang, X. H. et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 2381.

39

Siegfried, T.; Ekinci, Y.; Martin, O. J. F.; Sigg, H. Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators. Nano Lett. 2013, 13, 5449–5453.

40

Artar, A.; Yanik, A. A.; Altug, H. Fabry-pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 2009, 95, 051105.

41

Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171–1196.

42

Zrimsek, A. B.; Henry, A. -I.; Van Duyne, R. P. Single molecule surface-enhanced Raman spectroscopy without nanogaps. J. Phys. Chem. Lett. 2013, 4, 3206–3210.

43
Rybczynski, J.; Hilgendorff, M.; Giersig, M. Nanosphere lithography—fabrication of various periodic magnetic particle arrays using versatile nanosphere masks. In Low-dimensional Systems: Theory, Preparation, and some Applications; Liz-Marzán, L. M.; Giersig, M., Eds.; Springer: Netherlands, 2003; pp 163–172.https://doi.org/10.1007/978-94-010-0143-4_14
44

Sawaguchi, T.; Mizutani, F.; Yoshimoto, S.; Taniguchi, I. Voltammetric and in situ STM studies on self-assembled monolayers of 4-mercaptopyridine, 2-mercaptopyridine and thiophenol on Au(111) electrodes. Electrochim. Acta 2000, 45, 2861–2867.

45

Hu, J. W.; Zhao, B.; Xu, W. Q.; Li, B. F.; Fan, Y. G. Surfaceenhanced Raman spectroscopy study on the structure changes of 4-mercaptopyridine adsorbed on silver substrates and silver colloids. Spectrochim. Acta, Part A 2002, 58, 2827–2834.

46

Liu, N.; Giessen, H. Coupling effects in optical metamaterials. Angew. Chem., Int. Ed. 2010, 49, 9838–9852.

47

Taubert, R.; Ameling, R.; Weiss, T.; Christ, A.; Giessen, H. From near-field to far-field coupling in the third dimension: Retarded interaction of particle plasmons. Nano Lett. 2011, 11, 4421–4424.

48

Li, G. Z.; Shen, Y.; Xiao, G. H.; Jin, C. J. Double-layered metal grating for high-performance refractive index sensing. Opt. Express 2015, 23, 8995–9003.

49

Liu, T. R.; Shen, Y.; Shin, W.; Zhu, Q. Z.; Fan, S. H.; Jin, C. J. Dislocated double-layer metal gratings: An efficient unidirectional coupler. Nano Lett. 2014, 14, 3848–3854.

50

Lyvers, D. P.; Moon, J. M.; Kildishev, A. V.; Shalaev, V. M.; Wei, A. Gold nanorod arrays as plasmonic cavity resonators. ACS Nano 2008, 2, 2569–2576.

51

Doherty, M. D.; Murphy, A.; Pollard, R. J.; Dawson, P. Surface-enhanced Raman scattering from metallic nanostructures: Bridging the gap between the near-field and farfield responses. Phys. Rev. X 2013, 3, 011001.

52

Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804.

53

Im, H.; Bantz, K. C.; Lee, S. H.; Johnson, T. W.; Haynes, C. L.; Oh, S. H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678–2685.

54

Xu, H. B.; Lu, N.; Qi, D. P.; Hao, J. Y.; Gao, L. G.; Zhang, B.; Chi, L. F. Biomimetic antireflective Si nanopillar arrays. Small 2008, 4, 1972–1975.

55

Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Orlando, FL, 1985.

Nano Research
Pages 3715-3724
Cite this article:
Feng L, Ma R, Wang Y, et al. Silver-coated elevated bowtie nanoantenna arrays: Improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering. Nano Research, 2015, 8(11): 3715-3724. https://doi.org/10.1007/s12274-015-0871-2

621

Views

40

Crossref

N/A

Web of Science

38

Scopus

4

CSCD

Altmetrics

Received: 16 March 2015
Revised: 25 July 2015
Accepted: 30 July 2015
Published: 25 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return