AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors

Ashok K. SundramoorthyYi-Cheng WangSundaram Gunasekaran( )
Department of Biological Systems EngineeringUniversity of Wisconsin-Madison 460 Henry MallMadisonWI53706USA
Show Author Information

Graphical Abstract

Abstract

Single-walled carbon nanotubes (SWNTs) possess high conductivity, mechanical strength, transparency, and flexibility, and are thus suitable for use in flexible electronics, transparent electrodes, and energy-storage and energy-harvesting applications. However, to exploit these properties, SWNTs must be de-bundled in a surfactant solution to permit processing and use. We report a new method to prepare a SWNT-based transparent conducting film (TCF) using the diazo dye 3, 3′-([1, 1′-biphenyl]-4, 4′-diyl)bis(4-amino naphthalene-1-sulfonic acid), commonly known as Congo red (CR), as a dispersant. Uniform 20-nm-thick TCFs were prepared on rigid glass and flexible polyethylene terephthalate (PET) substrates. The CR-SWNT dispersion and the CR-SWNT TCFs were characterized via UV-Vis-NIR, Raman spectroscopy, FT-IR spectroscopy, transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS) measurements. The sheet resistivity of the CRSWNT TCF was ~34 ± 6.6 Ω/□ with a transmittance of 81% at 550 nm, comparable to that of indium tin oxide-based films. Unlike SWNT dispersions prepared in common surfactants, such as sodium dodecyl sulfate (SDS), sodium cholate (SC), and Triton X-100, the CR-SWNT dispersion was amenable to forming TCF by drop coating. The CR-SWNT TCF was also very stable, maintaining a very low sheet resistivity even after 1, 000 consecutive bending cycles of 8 mm bending radius. Further, manganese dioxide (MnO2) was electrochemically deposited on the CR-SWNT-PET film (MnO2-CR-SWNT-PET). The as-prepared MnO2-CR-SWNT-PET electrode exhibited high specific capacitance and bendability, demonstrating promise as a candidate electrode material for flexible supercapacitors.

Electronic Supplementary Material

Download File(s)
nr-8-10-3430_ESM.pdf (2.7 MB)

References

1

Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809–817.

2

Angmo, D.; Krebs, F. C. Flexible ITO-free polymer solar cells. J. Appl. Polym. Sci. 2013, 129, 1–14.

3

Lewis, J. Material challenge for flexible organic devices. Mater. Today 2006, 9, 38–45.

4

Ghaffarzadeh, K.; Das, R. Transparent Conductive Films (TCF) 2014–2024: Forecasts, Markets, Technologies; DTechEx: London, 2014.

5

Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

6

Xia, Y. J.; Sun, K.; Ouyang, J. Y. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440.

7

Kiruthika, S.; Gupta, R.; Rao, K. D. M.; Chakraborty, S.; Padmavathy, N.; Kulkarni, G. U. Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. J. Mater. Chem. C 2014, 2, 2089–2094.

8

Guo, C. F.; Sun, T. Y.; Liu, Q. H.; Suo, Z. G.; Ren, Z. F. Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 2014, 5, 3121.

9

Hsu, P. -C.; Wu, H.; Carney, T. J.; McDowell, M. T.; Yang, Y.; Garnett, E. C.; Li, M.; Hu, L. B.; Cui, Y. Passivation coating on electrospun copper nanofibers for stable transparent electrodes. ACS Nano 2012, 6, 5150–5156.

10

Liu, Q. F.; Fujigaya, T.; Cheng, H. M.; Nakashima, N. Free- standing highly conductive transparent ultrathin single-walled carbon nanotube films. J. Am. Chem. Soc. 2010, 132, 16581–16586.

11

Ho, X. N.; Wei, J. Films of carbon nanomaterials for transparent conductors. Materials 2013, 6, 2155–2181.

12

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

13

Rösner, B.; Guldi, D. M.; Chen, J.; Minett, A. I.; Fink, R. H. Dispersion and characterization of arc discharge single-walled carbon nanotubes - Towards conducting transparent films. Nanoscale 2014, 6, 3695–3703.

14

Mistry, K. S.; Larsen, B. A.; Bergeson, J. D.; Barnes, T. M.; Teeter, G.; Engtrakul, C.; Blackburn, J. L. n-Type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes. ACS Nano 2011, 5, 3714–3723.

15

Wang, J.; Zhang, J. T.; Sundramoorthy, A. K.; Chen, P.; Chan-Park, M. B. Solution-processed flexible transparent conductors based on carbon nanotubes and silver grid hybrid films. Nanoscale 2014, 6, 4560–4565.

16

Yang, S. B.; Kong, B. S.; Jung, D. H.; Baek, Y. K.; Han, C. S.; Oh, S. K.; Jung, H. T. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 2011, 3, 1361–1373.

17

Park, S.; Vosguerichian, M.; Bao, Z. A. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 2013, 5, 1727–1752.

18

Wang, X. H.; Tao, L.; Hao, Y. F.; Liu, Z. H.; Chou, H.; Kholmanov, I.; Chen, S. S.; Tan, C.; Jayant, N.; Yu, Q. K. et al. Direct delamination of graphene for high-performance plastic electronics. Small 2014, 10, 694–698.

19

Wang, P. -C.; Liu, L. -H.; Alemu Mengistie, D.; Li, K. -H.; Wen, B. -J.; Liu, T. -S.; Chu, C. -W. Transparent electrodes based on conducting polymers for display applications. Displays2013, 34, 301–314.

20

Hu, L. B.; Kim, H. S.; Lee, J. -Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

21

Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2003, 4, 35–39.

22

Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2941–2944.

23

Zhang, D. H.; Ryu, K.; Liu, X. L.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. W. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006, 6, 1880–1886.

24

Yim, J. H.; Kim, Y. S.; Koh, K. H.; Lee, S. Fabrication of transparent single wall carbon nanotube films with low sheet resistance. J. Vac. Sci. Technol. B 2008, 26, 851–855.

25

Tyler, T. P.; Brock, R. E.; Karmel, H. J.; Marks, T. J.; Hersam, M. C. Electronically monodisperse single-walled carbon nanotube thin films as transparent conducting anodes in organic photovoltaic devices. Adv. Energy Mater. 2011, 1, 785–791.

26

Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 2009, 21, 3210–3216.

27

Jung, H.; Yu, J. S.; Lee, H. P.; Kim, J. M.; Park, J. Y.; Kim, D. A scalable fabrication of highly transparent and conductive thin films using fluorosurfactant-assisted single-walled carbon nanotube dispersions. Carbon 2013, 52, 259–266.

28

Yang, S. B.; Kong, B. S.; Jung, H. T. Multistep deposition of gold nanoparticles on single-walled carbon nanotubes for high-performance transparent conducting films. J. Phys. Chem. C 2012, 116, 25581–25587.

29

Tkalya, E. E.; Ghislandi, M.; de With, G.; Koning, C. E. The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr. Opin. Colloid Interface Sci. 2012, 17, 225–231.

30

Kymakis, E.; Amaratunga, G. A. J. Electrical properties of single-wall carbon nanotube-polymer composite films. J. Appl. Phys. 2006, 99, 084302.

31

Rahman, R.; Servati, P. Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 2012, 23, 055703.

32

Geng, H. -Z.; Kim, K. K.; So, K. P.; Lee, Y. S.; Chang, Y.; Lee, Y. H. Effect of acid treatment on carbon nanotube- based flexible transparent conducting films. J. Am. Chem. Soc. 2007, 129, 7758–7759.

33

Jin, R.; Zhou, Z. X.; Mandrus, D.; Ivanov, I. N.; Eres, G.; Howe, J. Y.; Puretzky, A. A.; Geohegan, D. B. The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes. Phys. B 2007, 388, 326–330.

34

Zhang, Q. H.; Vichchulada, P.; Shivareddy, S. B.; Lay, M. D. Reducing electrical resistance in single-walled carbon nanotube networks: Effect of the location of metal contacts and low-temperature annealing. J. Mater. Sci. 2012, 47, 3233–3240.

35

Guo, H. -L.; Wang, X. -F.; Qian, Q. -Y.; Wang, F. -B.; Xia, X. -H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.

36

Dumitrescu, I.; Wilson, N. R.; Macpherson, J. V. Functionalizing single-walled carbon nanotube networks: Effect on electrical and electrochemical properties. J. Phys. Chem. C 2007, 111, 12944–12953.

37

Lobez, J. M.; Han, S. -J.; Afzali, A.; Hannon, J. B. Surface selective one-step fabrication of carbon nanotube thin films with high density. ACS Nano 2014, 8, 4954–4960.

38

Nirmalraj, P. P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.

39

Hu, C. G.; Chen, Z. L.; Shen, A. G.; Shen, X. C.; Li, J.; Hu, S. S. Water-soluble single-walled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye. Carbon 2006, 44, 428–434.

40

Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.

41

Fei, H. J.; Yang, C. Y.; Bao, H.; Wang, G. C. Flexible all- solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)–H2SO4 porous gel electrolytes. J. Power Sources 2014, 266, 488–495.

42

Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

43

Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

44

Liu, F.; Song, S. Y.; Xue, D. F.; Zhang, H. J. Folded structured graphene paper for high performance electrode materials. Adv. Mater. 2012, 24, 1089–1094.

45

Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

46

Li, H.; Zhao, Q.; Wang, W.; Dong, H.; Xu, D. S.; Zou, G. J.; Duan, H. L.; Yu, D. P. Novel planar-structure electrochemical devices for highly flexible semitransparent power generation/ storage Sources. Nano Lett. 2013, 13, 1271–1277.

47

Miller, J. R. Valuing reversible energy storage. Science 2012, 335, 1312–1313.

48

Ge, J.; Cheng, G. H.; Chen, L. W. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 2011, 3, 3084–3088.

49

He, S. J.; Chen, W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 2014, 262, 391–400.

50

Cai, W. H.; Lai, T.; Dai, W. L.; Ye, J. S. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids. J. Power Sources 2014, 255, 170–178.

51

Shi, C. L.; Zhao, Q.; Li, H.; Liao, Z. -M.; Yu, D. P. Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage. Nano Energy 2014, 6, 82–91.

52

Li, W. Y.; Xu, K. B.; Li, B.; Sun, J. Q.; Jiang, F. R.; Yu, Z. S.; Zou, R. J.; Chen, Z. G.; Hu, J. Q. MnO2 nanoflower arrays with high rate capability for flexible supercapacitors. ChemElectroChem2014, 1, 1003–1008.

53

Cole, D. P.; Reddy, A. L. M.; Hahm, M. G.; McCotter, R.; Hart, A. H. C.; Vajtai, R.; Ajayan, P. M.; Karna, S. P.; Bundy, M. L. Electromechanical properties of polymer electrolyte- based stretchable supercapacitors. Adv. Energy Mater. 2014, 4, 1300844.

54

Seo, J. W. T.; Yoder, N. L.; Shastry, T. A.; Humes, J. J.; Johns, J. E.; Green, A. A.; Hersam, M. C. Diameter refinement of semiconducting arc discharge single-walled carbon nanotubes via density gradient ultracentrifugation. J. Phys. Chem. Lett. 2013, 4, 2805–2810.

55

Sundramoorthy, A. K.; Mesgari, S.; Wang, J.; Kumar, R.; Sk, M. A.; Yeap, S. H.; Zhang, Q.; Sze, S. K.; Lim, K. H.; Chan-Park, M. B. Scalable and effective enrichment of semiconducting single-walled carbon nanotubes by a dual selective naphthalene-based azo dispersant. J. Am. Chem. Soc. 2013, 135, 5569–5581.

56

Li, J. B.; Huang, Y. X.; Chen, P.; Chan-Park, M. B. In situ charge-transfer-induced transition from metallic to semiconducting single-walled carbon nanotubes. Chem. Mater. 2013, 25, 4464–4470.

57

Mesgari, S.; Sundramoorthy, A. K.; Loo, L. S.; Chan-Park, M. B. Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes. Faraday Discuss. 2014, 173, 351–363.

58

Zhang, W.; Silva, S. R. P. Raman and FT-IR studies on dye-assisted dispersion and flocculation of single walled carbon nanotubes. Spectroc. Acta A 2010, 77, 175–178.

59

Shin, H. -J.; Kim, S. M.; Yoon, S. -M.; Benayad, A.; Kim, K. K.; Kim, S. J.; Park, H. K.; Choi, J. -Y.; Lee, Y. H. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 2008, 130, 2062–2066.

60

Sa, V.; Kornev, K. G. Analysis of stability of nanotube dispersions using surface tension isotherms. Langmuir 2011, 27, 13451–13460.

61

Matarredona, O.; Rhoads, H.; Li, Z. R.; Harwell, J. H.; Balzano, L.; Resasco, D. E. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 2003, 107, 13357–13367.

62

Li, F. H.; Bao, Y.; Chai, J.; Zhang, Q. X.; Han, D. X.; Niu, L. Synthesis and application of widely soluble graphene sheets. Langmuir2010, 26, 12314–12320.

63

Frid, P.; Anisimov, S. V.; Popovic, N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res. Rev. 2007, 53, 135–160.

64

Mirri, F.; Ma, A. W. K.; Hsu, T. T.; Behabtu, N.; Eichmann, S. L.; Young, C. C.; Tsentalovich, D. E.; Pasquali, M. High- performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 2012, 6, 9737–9744.

65

Gao, H. J.; Izquierdo, R.; Truong, V. V. Chemical vapor doping of transparent and conductive films of carbon nanotubes. Chem. Phys. Lett. 2012, 546, 109–114.

66

Dupont, M. F.; Donne, S. W. Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors. Electrochim. Acta 2014, 120, 219–225.

67

Le, W. -Z.; Liu, Y. -Q.; Hu, G. -Q. Preparation of manganese dioxide modified glassy carbon electrode by a novel film plating/cyclic voltammetry method for H2O2 detection. J. Chil. Chem. Soc. 2009, 54, 366–371.

68

Aboutalebi, S. H.; Chidembo, A. T.; Salari, M.; Konstantinov, K.; Wexler, D.; Liu, H. K.; Dou, S. X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 2011, 4, 1855–1865.

69

Feng, L.; Xuan, Z.; Zhao, H.; Bai, Y.; Guo, J.; Su, C. -W.; Chen, X. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res. Lett. 2014, 9, 290.

70

Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y.; Zeng, Y. Q. Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. J. Power Sources 2008, 180, 664–670.

Nano Research
Pages 3430-3445
Cite this article:
Sundramoorthy AK, Wang Y-C, Gunasekaran S. Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Research, 2015, 8(10): 3430-3445. https://doi.org/10.1007/s12274-015-0880-1

654

Views

27

Crossref

N/A

Web of Science

28

Scopus

4

CSCD

Altmetrics

Received: 02 April 2015
Revised: 27 May 2015
Accepted: 09 June 2015
Published: 08 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return