AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction

Lingxiao WangJing GengWenhai WangChao YuanLong KuaiBaoyou Geng( )
College of Chemistry and Materials ScienceThe Key Laboratory of Functional Molecular SolidsMinistry of EducationAnhui Laboratory of Molecular-Based MaterialsCenter for Nano Science and TechnologyAnhui Normal UniversityNo.1 Beijing East RoadWuhu241000China
Show Author Information

Graphical Abstract

Abstract

The sluggish oxygen evolution reaction (OER) is an important half-reaction of the electrochemical water-splitting reaction. Amorphous Fe/Ni composite oxides have high activity. In this work, we modified the aerosol spray-assisted approach and obtained amorphous Fe-Ni-O x solid-solution nanoparticles (Fe-Ni-O x -NPs) approximately 20 nm in size by choosing iron/nickel acetylacetonates as raw materials instead of inorganic salts. The small-sized Fe-Ni-O x -NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Furthermore, an investigation of electrochemical OER performance suggests that the small-sized Fe-Ni-O x -NPs have higher activity than the large-sized Fe-Ni-O x -MPs. A small overpotential of 0.315 V was demanded to obtain a working current density of 50 mA/cm2, and the Tafel slope was as low as 38 mV/dec.

Electronic Supplementary Material

Download File(s)
nr-8-12-3815_ESM.pdf (775.7 KB)

References

1

Man, I. C.; Su, H. -Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

2

Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.

3

Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asin, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47–54.

4

Geng, J.; Kuai, L.; Kan, E. J.; Wang, Q.; Geng, B. Y. Preciousmetal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route. ChemSusChem 2015, 8, 659–664.

5

Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175.

6

Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

7

Gong, M.; Zhou, W.; Tsai, M. -C.; Zhou, J. G.; Guan, M. Y.; Lin, M. -C.; Zhang, B.; Hu, Y. F.; Wang, D. -Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.

8

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

9

Tsuji, E.; Imanishi, A.; Fukui, K.; Nakato, Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 2011, 56, 2009–2016.

10

Smith, R. D. L.; Sporinova, B.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Facile photochemical preparation of amorphous iridium oxide films for water oxidation catalysis. Chem. Mater. 2014, 26, 1654–1659.

11

Singh, A.; Chang, S. L. Y.; Hocking, R. K.; Bachcde, U.; Spiccia, L. Highly active nickel oxide water oxidation catalysts deposited from molecular complexes. Energy Environ. Sci. 2013, 6, 579–586.

12

Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured a-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084.

13

Nadesan, J. C. B.; Tseung, A. C. C. Oxygen evolution on nickel oxide electrodes. J. Electrochem. Soc. 1985, 132, 2957–2959.

14

Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 1987, 134, 377–384.

15

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

16

Yeo, B. S.; Bell, A. T. In situ Raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J. Phys. Chem. C 2012, 116, 8394–8400.

17

Corrigan, D. A.; Conell, R. S.; Fierro, C. A.; Scherson, D. A. In-situ Mössbauer study of redox processes in a composite hydroxide of iron and nickel. J. Phys. Chem. 1987, 91, 5009–5011.

18

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

19

Yu, X. W.; Zhang, M.; Yuan, W. J.; Shi, G. Q. A highperformance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921–6928.

20

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.

21

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

22

Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

23

Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662–3674.

24

Chen, W.; Wang, H. T.; Li, Y. Z.; Liu, Y. Y.; Sun, J.; Lee, S. H.; Lee, J. -S.; Cui, Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. ACS Cent. Sci. 2015, 1, 244–251.

25

Smith, R. D. L.; Prevot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60–63.

26

Zhang, D. D.; Meng, L. J.; Shi, J. Y.; Wang, N.; Liu, S. Z.; Li, C. One-step preparation of optically transparent Ni–Fe oxide film electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2015, 169, 402–408.

27

Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeißer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.

28

Kuai, L.; Geng, J.; Chen, C. Y.; Kan, E. J.; Liu, Y. D.; Wang, Q.; Geng, B. Y. A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2014, 53, 7547–7551.

29

Jin, Z.; Xiao, M. D.; Bao, Z. H.; Wang, P.; Wang, J. F. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 6406–6410.

30

Choi, S. H.; Kang, Y. C. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties. Chem. —Eur. J. 2014, 20, 3014–3018.

31

Wu, Z.; Huang, X. -L.; Wang, Z. -L.; Xu, J. J.; Wang, H. -G.; Zhang X. -B. Homogeneous β-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors. Sci. Rep. 2014, 4, 3669.

32

Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH Nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.

33

U.S. Secretary of Commerce. NIST XPS Database. http://srdata.nist.gov/xps/EngElmSrchQuery.aspx (accessed Aug 1, 2015)

34

Zhang, J. C.; Yang, Y.; Zhang, Z. C.; Xu, X. B.; Wang, X. Rapid synthesis of mesoporous NixCo3–x (PO4)2 hollow shells showing enhanced electrocatalytic and supercapacitor performance. J. Mater. Chem. A 2014, 2, 20182–20188.

35

Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14, 1228–1233.

Nano Research
Pages 3815-3822
Cite this article:
Wang L, Geng J, Wang W, et al. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Research, 2015, 8(12): 3815-3822. https://doi.org/10.1007/s12274-015-0881-0

772

Views

99

Crossref

N/A

Web of Science

99

Scopus

13

CSCD

Altmetrics

Received: 01 August 2015
Revised: 10 August 2015
Accepted: 16 August 2015
Published: 10 October 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return