AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Prediction of a large-gap quantum-spin-Hall insulator: Diamond-like GaBi bilayer

Aizhu Wang1,2Aijun Du2( )Mingwen Zhao1( )
School of Physics and State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
School of ChemistryPhysics and Mechanical EngineeringQueensland University of TechnologyBrisbaneQLD4001Australia
Show Author Information

Graphical Abstract

Abstract

A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.

Electronic Supplementary Material

Download File(s)
nr-8-12-3823_ESM.pdf (1.4 MB)

References

1

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

2

Hasan, M. Z.; Moore, J. E. Three-dimensional topological insulators. Ann. Rev. Cond. Mat. Phys. 2011, 2, 55–78.

3

Bernevig, B. A.; Hughes, T. L.; Zhang, S. -C. Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.

4

König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. -L.; Zhang, S. -C. Quantum spin hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

5

Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin hall phase. Nature 2008, 452, 970–974.

6

Chen, Y. L.; Analytis, J. G.; Chu, J. -H.; Liu, Z. K.; Mo, S. -K.; Qi, X. -L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

7

Zhang, H. J.; Liu, C. -X.; Qi, X. -L.; Dai, X.; Fang, Z.; Zhang, S. -C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

8

Lin, H.; Markiewicz, R. S.; Wray, L. A.; Fu, L.; Hasan, M. Z.; Bansil, A. Single-Dirac-cone topological surface states in the TlBiSe2 class of topological semiconductors. Phys. Rev. Lett. 2010, 105, 036404.

9

Souma, S.; Eto, K.; Nomura, M.; Nakayama, K.; Sato, T.; Takahashi, T.; Segawa, K.; Ando, Y. Topological surface states in lead-based ternary telluride Pb(Bi1–x Sbx)2Te4. Phys. Rev. Lett. 2012, 108, 116801.

10

Wang, Z. F.; Liu, Z.; Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 2013, 4, 1471.

11

Xiao, D.; Yao, Y. G.; Feng, W. X.; Wen, J.; Zhu, W. G.; Chen, X. Q.; Stocks, G. M.; Zhang, Z. Y. Half-heusler compounds as a new class of three-dimensional topological insulators. Phys. Rev. Lett. 2010, 105, 096404.

12

Lin, H.; Wray, L. A.; Xia, Y. Q.; Xu, S. Y.; Jia, S.; Cava, R. J.; Bansil, A.; Hasan, M. Z. Half-heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 2010, 9, 546–549.

13

Liu, Z.; Liu, C. -X.; Wu, Y. -S.; Duan, W. -H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett. 2011, 107, 136805.

14

Zhang, X.; Zhang, H. J.; Wang, J.; Felser, C.; Zhang, S. -C. Actinide topological insulator materials with strong interaction. Science 2012, 335, 1464–1466.

15

Wang, Z. F.; Yao, M. -Y.; Ming, W. M.; Miao, L.; Zhu, F. F.; Liu, C. H.; Gao, C. L.; Qian, D.; Jia, J. -F.; Liu, F. Creation of helical dirac fermions by interfacing two gapped systems of ordinary fermions. Nat. Commun. 2013, 4, 1384.

16

Yang, F.; Miao, L.; Wang, Z. F.; Yao, M. -Y.; Zhu, F. F.; Song, Y. R.; Wang, M. -X.; Xu, J. -P.; Fedorov, A. V.; Sun, Z. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 2012, 109, 016801.

17

Luo, W.; Xiang, H. J. Room temperature quantum spin hall insulators with a buckled square lattice. Nano Lett. 2015, 15, 3230–3235.

18

Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. L.; Duan, W. H. Functionalized germanene as a prototype of large-gap twodimensional topological insulators. Phys. Rev. B 2014, 89, 115429.

19

Novoselov, K. S.; Fal' ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

20

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike twodimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

21

Liu, C. C.; Feng, W. X.; Yao, Y. G. Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

22

Zhao, M. W.; Dong, W. Z.; Wang, A. Z. Two-dimensional carbon topological insulators superior to graphene. Sci. Rep. 2013, 3, 3532.

23

Zhao, M. W.; Wang, A. Z.; Zhang, X. M. Half-metallicity of a kagome spin lattice: The case of a manganese bisdithiolene monolayer. Nanoscale 2013, 5, 10404–10408.

24

Wang, Z. F.; Su, N. H.; Liu, F. Prediction of a twodimensional organic topological insulator. Nano Lett. 2013, 13, 2842–2845.

25

Wang, A. Z.; Zhang, X. M.; Zhao, M. W. Topological insulator states in a honeycomb lattice of s-triazines. Nanoscale 2014, 6, 11157–11162.

26

Khaliullin, R. Z.; Eshet, H.; Kühne, T. D.; Behler, J.; Parrinello, M. Nucleation mechanism for the direct graphiteto- diamond phase transition. Nat. Mater. 2011, 10, 693–697.

27

Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

28

Zhang, Z. H.; Zeng, X. C.; Guo, W. L. Fluorinating hexagonal boron nitride/graphene multilayers into hybrid diamondlike nanofilms with tunable energy gap. J. Phys. Chem. C 2011, 115, 21678–21684.

29

De Marcillac, P.; Coron, N.; Dambier, G.; Leblanc, J.; Moalic, J. P. Experimental detection of a-particles from the radioactive decay of natural bismuth. Nature 2003, 422, 876–878.

30

Zhang, H. B.; Freimuth, F.; Bihlmayer, G.; Blügel, S.; Mokrousov, Y. Topological phases of Bi (111) bilayer in an external exchange field. Phys. Rev. B 2012, 86, 035104.

31

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

32

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

33

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

34

Perdew, J. P. Density functional theory and the band gap problem. Int. J. Quantum Chem. 1986, 30, 451.

35

Wang, X. P.; Zhao, M. W.; He, T.; Wang, Z. H.; Liu, X. D. Can cation vacancy defects induce room temperature ferromagnetism in GaN? Appl. Phys. Lett. 2013, 102, 062411.

36

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: "Hybrid functionals based on a screened coulomb potential" J. Chem. Phys. 2003, 118, 8207.

37

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: "Hybrid functionals based on a screened coulomb potential" J. Chem. Phys. 2006, 124, 219906.

38

Alfè, D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun. 2009, 180, 2622–2633.

39

Ma, Y. D.; Li, X.; Kou, L. Z.; Yan, B. H.; Niu, C. W.; Dai, Y.; Heine, T. Two-dimensional inversion-asymmetric topological insulators in functionalized Ⅲ-Bi bilayers. Phys. Rev. B 2015, 91, 235306.

40

Li, L. Y.; Zhang, X. M.; Chen, X.; Zhao, M. W. Giant topological nontrivial band gaps in chloridized gallium bismuthide. Nano Lett. 2015, 15, 1296–1301.

41

Bychkov, Y. A.; Rashba, é. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78.

42

Žutic, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323.

43

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

44

Xu, Y.; Yan, B. H; Zhang, H. -J.; Wang, J.; Xu, G.; Tang, P. Z; Duan, W. H; Zhang, S. -C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

45

Niu, C. W.; Bihlmayer, G.; Zhang, H. B.; Wortmann, D.; Blügel, S.; Mokrousov, Y. Functionalized bismuth films: Giant gap quantum spin hall and valley-polarized quantum anomalous hall states. Phys. Rev. B 2015, 91, 041303.

46

Liu, C. -C.; Zhou, J. -J.; Yao, Y. G. Valley-polarized quantum anomalous hall phases and tunable topological phase transitions in half-hydrogenated Bi honeycomb monolayers. Phys. Rev. B 2015, 91, 165430.

47

Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.

Nano Research
Pages 3823-3829
Cite this article:
Wang A, Du A, Zhao M. Prediction of a large-gap quantum-spin-Hall insulator: Diamond-like GaBi bilayer. Nano Research, 2015, 8(12): 3823-3829. https://doi.org/10.1007/s12274-015-0882-z

735

Views

11

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 01 June 2015
Revised: 19 July 2015
Accepted: 17 August 2015
Published: 16 September 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return