AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material

Yi Zhang1,2Bao Zhang1( )Xiao Peng1Lin Liu1Shuo Dong1Liping Lin1Si Chen1Shuxian Meng1Yaqing Feng1,2( )
School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072China
Show Author Information

Graphical Abstract

Abstract

Several mesoporous TiO2 (MT) materials were synthesized under different conditions following a hydrothermal procedure using poly(ethylene-glycol)-block-poly(propylene-glycol)-block-poly(ethylene-glycol) (P123) as the template and titanium isopropoxide as the titanium source. The molar ratios of Ti/P123, and the pH values of the reaction solution in an autoclave were investigated. Various techniques such as Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), laser Raman spectrometry (LRS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the products. Then, these materials were assembled into dye-sensitized solar cells (DSSCs). Analysis of the J–V curves and electrochemical impedance spectroscopy (EIS) were applied to characterize the cells. The results indicated that the specific surface area and crystalline structure of these materials provide the possibility of high photocurrent for the cells, and that the structural characteristics of the specimens led to increased electron transfer resistance of the cells, which was beneficial for the improvement of the photovoltage of the DSSCs. The highest photoelectric conversion efficiency of the cells involving MT materials reached 8.33%, which, compared with that of P25-based solar cell (5.88%), increased by 41.7%.

References

1

Green, M. A.; Emery, K.; Hishikawa, Y.; Warta W.; Dunlop, E. D. Solar cell efficiency tables (Version 40). Prog. Photovolt. : Res. Appl. 2012, 20, 606–614.

2

Green, M. A. Silicon solar cells: Evolution, high-efficiency design and efficiency enhancements. Semicond. Sci. Technol. 1993, 8, 1–12.

3

Branker, K.; Pathak, M. J. M.; Pearce, J. M. A review of solar photovoltaic levelized cost of electricity. Renew. Sust. Energ. Rev. 2011, 15, 4470–4482.

4

Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 4, 145–153.

5

Kuang, D. B.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Grätzel, M. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2008, 2, 1113–1116.

6

O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

7

Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I. Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 2000, 104, 2053–2059.

8

Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 2003, 125, 475–482.

9

Chen, S. G.; Chappel, S.; Diamant, Y.; Zaban, A. Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem. Mater. 2001, 13, 4629–4634.

10

Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. Coreshell nanoporous electrode for dye sensitized solar cells: The effect of the SrTiO3 shell on the electronic properties of the TiO2 core. J. Phys. Chem. B 2003, 107, 1977–1981.

11

Diamant, Y.; Chappel, S.; Chen, S. G.; Melamed, O.; Zaban, A. Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode. Coord. Chem. Rev. 2004, 248, 1271–1276.

12

Fujihara, K.; Kumar, A.; Jose, R.; Ramakrishna, S.; Uchida, S. Spray deposition of electrospun TiO2 nanorods for dyesensitized solar cell. Nanotechnology 2007, 18, 365709.

13

Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781–3786.

14

Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

15

Gong, D. W.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331–3334.

16

Mor, G. K.; Varghese, O. K; Paulose, M.; Shankar, K.; Grimes, C. A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075.

17

Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S.; Park, N. G.; Kim, K.; Lee, W. I. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 2009, 21, 3668–3673.

18

Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G. Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Adv. Mater. 2008, 20, 195–199.

19

Yang, P. D.; Zhao, D. Y.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396, 152–155.

20

Nedelcu, M.; Guldin, S.; Orilall, M. C.; Lee, J.; Hüttner, S.; Crossland, E. J. W.; Warren, S. C.; Ducati, C.; Laity, P. R.; Eder, D. et al. Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO2. J. Mater. Chem. 2010, 20, 1261–1268.

21

Kim, D. S.; Jeon, J. D.; Shin, K. H. The size-controlled synthesis of monodisperse spherical mesoporous TiO2 particles and high dispersions of Pt, Pd, and Ag clusters on their surfaces. Micropor. Mesopor. Mat. 2013, 181, 61–67.

22

Peng, X.; Feng, Y. Q.; Meng, S. X.; Zhang, B. Preparation of hierarchical TiO2 films with uniformly or gradually changed pore size for use as photoelectrodes in dye-sensitized solar cells. Electrochim. Acta 2014, 115, 255–262.

23

Gao, Y.; Feng, Y. Q.; Zhang, B.; Zhang, F.; Peng, X.; Liu, L.; Meng, S. X. Double-N doping: A new discovery about N-doped TiO2 applied in dye-sensitized solar cells. RSC Adv. 2014, 4, 16992–16998.

24

Yang, Y. B.; Peng, X.; Chen, S.; Lin, L. P.; Zhang, B.; Feng, Y. Q. Performance improvement of dye-sensitized solar cells by introducing a hierarchical compact layer involving ZnO and TiO2 blocking films. Ceram. Int. 2014, 40, 15199–15206.

25

Liu, B. S.; Zhang, Y.; Liu, J. F.; Tian, M.; Zhang, F. M.; Au, C. T.; Cheung, A. S. -C. Characteristic and mechanism of methane dehydroaromatization over Zn-Based/HZSM-5 catalysts under conditions of atmospheric pressure and supersonic jet expansion. J. Phys. Chem. C 2011, 115, 16954–16962.

26

Zhang, Y.; Liu, B. S.; Zhang, F. M.; Zhang, Z. F. Formation of (FexMn2-x)O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization. J. Hazard. Mater. 2013, 248–249, 81–88.

27

Zhang, Y. L.; Wei, S.; Zhang, H. Y.; Liu, S.; Nawaz, F.; Xiao, F. S. Nanoporous polymer monoliths as adsorptive supports for robust photocatalyst of Degussa P25. J. Colloid Inter. Sci. 2009, 339, 434–438.

28

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.

29

Lin, J. J.; Zhao, L.; Heo, Y. U.; Wang, L. Z.; Bijarbooneh, F. H.; Mozer, A. J.; Nattestad, A.; Yamauchi, Y.; Dou, S. X.; Kim, J. H. Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy 2015, 11, 557–567.

30

Park, N. G.; van de Lagemaat, J.; Frank, A. J. Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 2000, 104, 8989–8994.

31

Liu, Z. M.; Yi, Y.; Li, J. H.; Woo, S. I.; Wang, B. Y.; Cao, X. Z.; Li, Z. X. A superior catalyst with dual redox cycles for the selective reduction of NOx by ammonia. Chem. Commun. 2013, 49, 7726–7728.

32

Kolen'ko, Y. V.; Kovnir, K. A.; Gavrilov, A. I.; Garshev, A. V.; Meskin, P. E.; Churagulov, B. R.; Bouchard, M.; Colbeau-Justin, C.; Lebedev, O. I.; Van Tendeloo, G. et al. Structural, textural, and electronic properties of a nanosized mesoporous ZnxTi1–x O2–x solid solution prepared by a supercritical drying route. J. Phys. Chem. B 2005, 109, 20303–20309.

33

Buciuman, F.; Patcas, F.; Cracium, R.; Zahn, D. R. T. Vibrational spectroscopy of bulk and supported manganese oxides. Phys. Chem. Chem. Phys. 1999, 1, 185–190.

34

Zuo, J.; Xu, C. Y.; Liu, Y. P.; Qian, Y. T. Crystallite size effects on the Raman spectra of Mn3O4. Nanostruct. Mater. 1998, 10, 1331–1335.

35

Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, 1992.

36

Huo, K. F.; Wang, H. R.; Zhang, X. M.; Cao, Y.; Chu, P. K. Heterostructured TiO2 nanoparticles/nanotube arrays: In situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem 2012, 77, 323–329.

37

Fu, Y. Q.; Du, H. J.; Zhang, S.; Huang, W. M. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Mater. Sci. Eng. A 2005, 403, 25–31.

38

Jang, I.; Song, K.; Park, J. H.; Oh, S. G. Enhancement of dye adsorption on TiO2 surface through hydroxylation process for dye-sensitized solar cells. Bull. Korean Chem. Soc. 2013, 34, 2883–2888.

39

Bisquert, J. Chemical capacitance of nanostructured semiconductors: Its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 2003, 5, 5360–5364.

40

Han, L. Y.; Koide, N.; Chiba, Y.; Mitate, T. Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett. 2004, 84, 2433–2435.

41

Lu, X. J.; Mou, X. L.; Wu, J. J.; Zhang, D. W.; Zhang, L. L.; Huang, F. Q.; Xu, F. F.; Huang, S. M. Improved performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: Efficient electron injection and transfer. Adv. Funct. Mater. 2010, 20, 509–515.

42

Liu, W. Q.; Liang, Z. G.; Kou, D. X.; Hu, L. H.; Dai, S. Y. Wide frequency range diagnostic impedance behavior of the multiple interfaces charge transport and transfer processes in dye-sensitized solar cells. Electrochim. Acta 2013, 88, 395–403.

43

Adachi, M.; Sakamoto, M.; Jiu, J. T.; Ogata, Y.; Isoda, S. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 2006, 110, 13872–13880.

44

Wang, Q.; Moser, J. E.; Grätzel, M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 14945–14953.

45

van de Lagemaat, J.; Park, N. G.; Frank, A. J. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: A study by electrical impedance and optical modulation techniques. J. Phys. Chem. B 2000, 104, 2044–2052.

Nano Research
Pages 3830-3841
Cite this article:
Zhang Y, Zhang B, Peng X, et al. Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material. Nano Research, 2015, 8(12): 3830-3841. https://doi.org/10.1007/s12274-015-0883-y

623

Views

22

Crossref

N/A

Web of Science

27

Scopus

4

CSCD

Altmetrics

Received: 12 May 2015
Revised: 14 August 2015
Accepted: 19 August 2015
Published: 13 October 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return