AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation

Weitao Su1,2,3( )Naresh Kumar3Steve J. Spencer3Ning Dai2Debdulal Roy3( )
Institute of Materials PhysicsHangzhou Dianzi UniversityHangzhou310018China
Ningbo Institute of Materials Technology & EngineeringChinese Academy of SciencesNingbo315201China
ational Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LWUK
Show Author Information

Graphical Abstract

Abstract

The use of single-layer MoS2 in light emitting devices requires innovative methods to enhance its low photoluminescence (PL) quantum yield. In this work, we report that single-layer MoS2 with a strong PL can be prepared by oxidizing bilayer MoS2 using UV-ozone oxidation. We show that as compared to mechanically-exfoliated single-layer MoS2, the PL intensity of the single-layer MoS2 prepared by UV-ozone oxidation is enhanced by 20-30 times. We demonstrate that the PL intensity of both neutral excitons and trions (charged excitons) can be greatly enhanced in the oxidized MoS2 samples. These results provide novel insights into the PL enhancement of single-layer MoS2.

Electronic Supplementary Material

Download File(s)
nr-8-12-3878_ESM.pdf (1,013.2 KB)

References

1

Tonndorf, P. ; Schmidt, R. ; Böttger, P. ; Zhang, X. ; Börner, J. ; Liebig, A. ; Albrecht, M. ; Kloc, C. ; Gordan, O. ; Zahn, D. R. T. et al. Photoluminescence emission and raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908-4916.

2

Kam, K. K. ; Parkinson, B. A. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Phys. Chem. 1982, 86, 463-467.

3

Mak, K. F. ; Lee, C. ; Hone, J. ; Shan, J. ; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

4

Jariwala, D. ; Sangwan, V. K. ; Lauhon, L. J. ; Marks, T. J. ; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. Acs Nano 2014, 8, 1102-1120.

5

Yin, Z. Y. ; Li, H. ; Li, H. ; Jiang, L. ; Shi, Y. M. ; Sun, Y. H. ; Lu, G. ; Zhang, Q. ; Chen, X. D. ; Zhang, H. Single-layer MoS2 phototransistors. Acs Nano 2012, 6, 74-80.

6

Radisavljevic, B. ; Radenovic, A. ; Brivio, J. ; Giacometti, V. ; Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 2011, 6, 147-150.

7

Sanchez-Lopez, O. ; Llado, E. A. ; Koman, V. ; Morral, A. F. ; Radenovic, A. ; Kis, A. Light generation and harvesting in a van der waals heterostructure. Acs Nano 2014, 8, 3042-3048.

8

Lee, G. -H. ; Yu, Y. -J. ; Cui, X. ; Petrone, N. ; Lee, C. -H. ; Choi, M. S. ; Lee, D. -Y. ; Lee, C. ; Yoo, W. J. ; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. Acs Nano 2013, 7, 7931-7936.

9

Sundaram, R. S. ; Engel, M. ; Lombardo, A. ; Krupke, R. ; Ferrari, A. C. ; Avouris, P. ; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416-1421.

10

Mak, K. F. ; He, K. L. ; Shan, J. ; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.

11

Cao, T. ; Wang, G. ; Han, W. P. ; Ye, H. Q. ; Zhu, C. R. ; Shi, J. R. ; Niu, Q. ; Tan, P. H. ; Wang, E. G. ; Liu, B. L. et al. Valley- selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

12

Zeng, H. L. ; Dai, J. F. ; Yao, W. ; Xiao, D. ; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.

13

Zhu, H. M. ; Lin, C. C. ; Luo, W. Q. ; Shu, S. T. ; Liu, Z. G. ; Liu, Y. S. ; Kong, J. T. ; Ma, E. ; Cao, Y. G. ; Liu, R. S. et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 2014, 5, 4312.

14

Sobhani, A. ; Lauchner, A. ; Najmaei, S. ; Ayala-Orozco, C. ; Wen, F. ; Lou, J. ; Halas, N. J. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 2014, 104, 031112.

15

Nan, H. Y. ; Wang, Z. L. ; Wang, W. H. ; Liang, Z. ; Lu, Y. ; Chen, Q. ; He, D. W. ; Tan, P. H. ; Miao, F. ; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738-5745.

16

Tongay, S. ; Zhou, J. ; Ataca, C. ; Liu, J. ; Kang, J. S. ; Matthews, T. S. ; You, L. ; Li, J. B. ; Grossman, J. C. ; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831-2836.

17

Mouri, S. ; Miyauchi, Y. ; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.

18

Splendiani, A. ; Sun, L. ; Zhang, Y. B. ; Li, T. S. ; Kim, J. ; Chim, C. -Y. ; Galli, G. ; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

19

Molina-Sánchez, A. ; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

20

Buscema, M. ; Steele, A. G. ; van der Zant, H. S. J. ; Castellanos-Gomez, A. The effect of the substrate on the raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561-571.

21

Yamamoto, M. ; Einstein, T. L. ; Fuhrer, M. S. ; Cullen, W. G. Anisotropic etching of atomically thin MoS2. J Phys. Chem. C 2013, 117, 25643-25649.

22

Castellanos-Gomez, A. ; Barkelid, M. ; Goossens, A. M. ; Calado, V. E. ; van der Zant, H. S. J. ; Steele, G. A. Laser- thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187-3192.

23

Mak, K. F. ; He, K. L. ; Lee, C. ; Lee, G. H. ; Hone, J. ; Heinz, T. F. ; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.

24

Zhou, W. ; Zou, X. L. ; Najmaei, S. ; Liu, Z. ; Shi, Y. M. ; Kong, J. ; Lou, J. ; Ajayan, P. M. ; Yakobson, B. I. ; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.

25

Sercombe, D. ; Schwarz, S. ; Del Pozo-Zamudio, O. ; Liu, F. ; Robinson, B. J. ; Chekhovich, E. A. ; Tartakovskii, I. I. ; Kolosov, O. ; Tartakovskii, A. I. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489.

26

Lide, D. R. Handbook of Chemistry and Physics, 90th ed. ; CRC Press: Boca Raton, Florida, 2010.

27

Qiu, H. ; Xu, T. ; Wang, Z. L. ; Ren, W. ; Nan, H. Y. ; Ni, Z. H. ; Chen, Q. ; Yuan, S. J. ; Miao, F. ; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

28

Su, W. T. ; Dou, H. L. ; Huo, D. X. ; Dai, N. ; Yang, L. Enhancing photoluminescence of trion in single-layer MoS2 using p-type aromatic molecules. Chem. Phys. Lett. 2015, 635, 40-44.

29

García-Vidal, F. J. ; Pendry, J. B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 1996, 77, 1163-1166.

30

Smith, E. ; Dent, D. Modern Raman Spectroscopy: A Practical Approach; Wiley: Chichester, 2005.

31

Azcatl, A. ; McDonnell, S. ; Santosh, K. C. ; Peng, X. ; Dong, H. ; Qin, X. Y. ; Addou, R. ; Mordi, G. I. ; Lu, N. ; Kim, J. et al. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Appl. Phys. Lett. 2014, 104, 111601.

Nano Research
Pages 3878-3886
Cite this article:
Su W, Kumar N, Spencer SJ, et al. Transforming bilayer MoS2 into single-layer with strong photoluminescence using UV-ozone oxidation. Nano Research, 2015, 8(12): 3878-3886. https://doi.org/10.1007/s12274-015-0887-7

594

Views

57

Crossref

N/A

Web of Science

60

Scopus

3

CSCD

Altmetrics

Received: 03 May 2015
Revised: 24 August 2015
Accepted: 25 August 2015
Published: 23 October 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return