Graphical Abstract

The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the graphene BLGs, either big or small, interferes with the formation of inter-layer C–C covalent bonds and this leads to strong resistance to hydrogenation. In addition, the electronic properties of stable, hydrogenated twisted BLG with different twist angles and degrees of H coverage were investigated. This study paves the way to the selective functionalization of BLG for various applications.
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
Xu, M. S. ; Liang, T. ; Shi, M. M. ; Chen, H. Z. Graphene- like two-dimensional materials. Chem. Rev. 2013, 113, 3766- 3798.
Killi, M. ; Wu, S. ; Paramekanti, A. Band structures of bilayer graphene superlattices. Phys. Rev. Lett. 2011, 107, 086801.
Balog, R. ; Jørgensen, B. ; Nilsson, L. ; Andersen, M. ; Rienks, E. ; Bianchi, M. ; Fanetti, M. ; Lægsgaard, E. ; Baraldi, A. ; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315- 319.
Dikin, D. A. ; Stankovich, S. ; Zimney, E. J. ; Piner, R. D. ; Dommett, G. H. B. ; Evmenenko, G. ; Nguyen, S. T. ; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457-460.
Robinson, J. T. ; Burgess, J. S. ; Junkermeier, C. E. ; Badescu, S. C. ; Reinecke, T. L. ; Keith, P. F. ; Zalalutdniov, M. K. ; Baldwin, J. W. ; Culbertson, J. C. ; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001-3005.
Pujari, B. S. ; Gusarov, S. ; Brett, M. ; Kovalenko, A. Single- side-hydrogenated graphene: Density functional theory predictions. Phys. Rev. B 2011, 84, 041402(R).
Elias, D. C. ; Nair, R. R. ; Mohiuddin, T. M. G. ; Morozov, S. V. ; Blake, P. ; Halsall, M. P. ; Ferrari, A. C. ; Boukhvalov, D. W. ; Katsnelson, M. I. ; Geim, A. K. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610-613.
Sofo, J. O. ; Chaudhari, A. S. ; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.
Ryu, S. M. ; Han, M. Y. ; Maultzsch, J. ; Heinz, T. F. ; Kim, P. ; Steigerwald, M. L. ; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 4597-4602.
Lopes dos Santos, J. M. B. ; Peres, N. M. R. ; Castro Neto, A. H. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett. 2007, 99, 256802.
Zhang, Y. B. ; Tang, T. T. ; Girit, C. ; Hao, Z. ; Martin, M. C. ; Zettl, A. ; Crommie, M. F. ; Shen, Y. R. ; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820-823.
Castro, E. V. ; Novoselov, K. S. ; Morozov, S. V. ; Peres, N. M. R. ; Lopes dos Santos, J. M. B. ; Nilsson, J. ; Guinea, F. ; Geim, A. K. ; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.
Kim, K. S. ; Walter, A. L. ; Moreschini, L. ; Seyller, T. ; Horn, K. ; Rotenberg, E. ; Bostwick, A. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nat. Mater. 2013. 12, 887-892.
Latil, S. ; Meunier, V. ; Henrard, L. Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 2007, 76, 201402(R).
Li, G. H. ; Luican, A. ; Lopes dos Santos, J. M. B. ; Castro Neto, A. H. ; Reina, A. ; Kong, J. ; Andrei, E. Y. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109-113.
Luican, A. ; Li, G. H. ; Reina, A. ; Kong, J. ; Nair, R. R. ; Novoselov, K. S. ; Geim, A. K. ; Andrei, E. Y. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 2011, 106, 126802.
Lu, C. C. ; Lin, Y. C. ; Liu, Z. ; Yeh, C. H. ; Suenaga, K. ; Chiu, P. W. Twisting bilayer graphene superlattices. ACS Nano 2013, 7, 2587-2594.
Kim, K. ; Coh, S. ; Tan, L. Z. ; Regan, W. ; Yuk, J. M. ; Chatterjee, E. ; Crommie, M. F. ; Cohen, M. L. ; Louie, S. G. ; Zettl, A. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 2012, 108, 246103.
Carozo, V. ; Almeida, C. M. ; Ferreira, E. H. M. ; Cançado, L. G. ; Achete, C. A. ; Jorio. A. Raman signature of graphene superlattices. Nano Lett. 2011, 11, 4527-4534.
Leenaerts, O. ; Partoens, B. ; Peeters, F. M. Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Phys. Rev. B 2009, 80, 245422.
Zhu, L. Y. ; Hu, H. ; Chen, Q. ; Wang, S. D. ; Wang, J. L. ; Ding, F. Formation and electronic properties of hydrogenated few layer graphene. Nanotechnology 2011, 22, 185202.
Kvashnin, A. G. ; Chernozatonskii, L. A. ; Yakobson, B. I. ; Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 2014, 14, 676-681.
Rajasekaran, S. ; Abild-Pedersen, F. ; Ogasawara, H. ; Nilsson, A. ; Kaya, S. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys. Rev. Lett. 2013, 111, 085503.
Ray, N. R. ; Datta, J. ; Biswas, H. S. ; Datta, S. Signature of misoriented bilayer graphenelike and graphanelike structure in the hydrogenated diamond-like carbon film. IEEE Trans. Plasma Sci. 2012, 40, 1789-1793.
Muniz, A. R. ; Maroudas, D. Opening and tuning of band gap by the formation of diamond superlattices in twisted bilayer graphene. Phys. Rev. B 2012, 86, 075404.
Luo, Z. Q. ; Yu, T. ; Kim, K. J. ; Ni, Z. H. ; You, Y. M; Lim, S. H. ; Shen, Z. X. ; Wang, S. Z. ; Lin, J. Y. Thickness- dependent reversible hydrogenation of graphene layers. ACS Nano 2009, 3, 1781-1788.
Kresse, G. ; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115.
Kresse, G. ; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
Kresse, G. ; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Perdew, J. P. ; Burke, K. ; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865- 3868.
Kolmogorov, A. N. ; Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B. 2005, 71, 235415.
Monkhorst, H. J. ; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B. 1976, 13, 5188.
Duplock, E. J. ; Scheffler, M. ; Lindan, P. J. D. Hallmark of perfect graphene. Phys. Rev. Lett. 2004, 92, 225502.
Samarakoon, D. K. ; Wang, X. Q. Tunable band gap in hydrogenated bilayer graphene. ACS Nano 2010, 4, 4126- 4130.
Lebègue, S. ; Klintenberg, M. ; Eriksson, O. ; Katsnelson, M. I. Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B 2009, 79, 245117.