AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogenation of bilayer graphene: A small twist makes a big difference

Jichen Dong1,2Kaili Zhang1( )Feng Ding2( )
Department of Mechanical and Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077China
Institute of Textiles and ClothingHong Kong Polytechnic UniversityKowloonHong Kong999077China
Show Author Information

Graphical Abstract

Abstract

The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the graphene BLGs, either big or small, interferes with the formation of inter-layer C–C covalent bonds and this leads to strong resistance to hydrogenation. In addition, the electronic properties of stable, hydrogenated twisted BLG with different twist angles and degrees of H coverage were investigated. This study paves the way to the selective functionalization of BLG for various applications.

Electronic Supplementary Material

Download File(s)
nr-8-12-3887_ESM.pdf (2.6 MB)

References

1

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.

2

Xu, M. S. ; Liang, T. ; Shi, M. M. ; Chen, H. Z. Graphene- like two-dimensional materials. Chem. Rev. 2013, 113, 3766- 3798.

3

Killi, M. ; Wu, S. ; Paramekanti, A. Band structures of bilayer graphene superlattices. Phys. Rev. Lett. 2011, 107, 086801.

4

Balog, R. ; Jørgensen, B. ; Nilsson, L. ; Andersen, M. ; Rienks, E. ; Bianchi, M. ; Fanetti, M. ; Lægsgaard, E. ; Baraldi, A. ; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315- 319.

5

Dikin, D. A. ; Stankovich, S. ; Zimney, E. J. ; Piner, R. D. ; Dommett, G. H. B. ; Evmenenko, G. ; Nguyen, S. T. ; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457-460.

6

Robinson, J. T. ; Burgess, J. S. ; Junkermeier, C. E. ; Badescu, S. C. ; Reinecke, T. L. ; Keith, P. F. ; Zalalutdniov, M. K. ; Baldwin, J. W. ; Culbertson, J. C. ; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001-3005.

7

Pujari, B. S. ; Gusarov, S. ; Brett, M. ; Kovalenko, A. Single- side-hydrogenated graphene: Density functional theory predictions. Phys. Rev. B 2011, 84, 041402(R).

8

Elias, D. C. ; Nair, R. R. ; Mohiuddin, T. M. G. ; Morozov, S. V. ; Blake, P. ; Halsall, M. P. ; Ferrari, A. C. ; Boukhvalov, D. W. ; Katsnelson, M. I. ; Geim, A. K. et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610-613.

9

Sofo, J. O. ; Chaudhari, A. S. ; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

10

Ryu, S. M. ; Han, M. Y. ; Maultzsch, J. ; Heinz, T. F. ; Kim, P. ; Steigerwald, M. L. ; Brus, L. E. Reversible basal plane hydrogenation of graphene. Nano Lett. 2008, 8, 4597-4602.

11

Lopes dos Santos, J. M. B. ; Peres, N. M. R. ; Castro Neto, A. H. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett. 2007, 99, 256802.

12

Zhang, Y. B. ; Tang, T. T. ; Girit, C. ; Hao, Z. ; Martin, M. C. ; Zettl, A. ; Crommie, M. F. ; Shen, Y. R. ; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820-823.

13

Castro, E. V. ; Novoselov, K. S. ; Morozov, S. V. ; Peres, N. M. R. ; Lopes dos Santos, J. M. B. ; Nilsson, J. ; Guinea, F. ; Geim, A. K. ; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

14

Kim, K. S. ; Walter, A. L. ; Moreschini, L. ; Seyller, T. ; Horn, K. ; Rotenberg, E. ; Bostwick, A. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. Nat. Mater. 2013. 12, 887-892.

15

Latil, S. ; Meunier, V. ; Henrard, L. Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints. Phys. Rev. B 2007, 76, 201402(R).

16

Li, G. H. ; Luican, A. ; Lopes dos Santos, J. M. B. ; Castro Neto, A. H. ; Reina, A. ; Kong, J. ; Andrei, E. Y. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109-113.

17

Luican, A. ; Li, G. H. ; Reina, A. ; Kong, J. ; Nair, R. R. ; Novoselov, K. S. ; Geim, A. K. ; Andrei, E. Y. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 2011, 106, 126802.

18

Lu, C. C. ; Lin, Y. C. ; Liu, Z. ; Yeh, C. H. ; Suenaga, K. ; Chiu, P. W. Twisting bilayer graphene superlattices. ACS Nano 2013, 7, 2587-2594.

19

Kim, K. ; Coh, S. ; Tan, L. Z. ; Regan, W. ; Yuk, J. M. ; Chatterjee, E. ; Crommie, M. F. ; Cohen, M. L. ; Louie, S. G. ; Zettl, A. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 2012, 108, 246103.

20

Carozo, V. ; Almeida, C. M. ; Ferreira, E. H. M. ; Cançado, L. G. ; Achete, C. A. ; Jorio. A. Raman signature of graphene superlattices. Nano Lett. 2011, 11, 4527-4534.

21

Leenaerts, O. ; Partoens, B. ; Peeters, F. M. Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Phys. Rev. B 2009, 80, 245422.

22

Zhu, L. Y. ; Hu, H. ; Chen, Q. ; Wang, S. D. ; Wang, J. L. ; Ding, F. Formation and electronic properties of hydrogenated few layer graphene. Nanotechnology 2011, 22, 185202.

23

Kvashnin, A. G. ; Chernozatonskii, L. A. ; Yakobson, B. I. ; Sorokin, P. B. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 2014, 14, 676-681.

24

Rajasekaran, S. ; Abild-Pedersen, F. ; Ogasawara, H. ; Nilsson, A. ; Kaya, S. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys. Rev. Lett. 2013, 111, 085503.

25

Ray, N. R. ; Datta, J. ; Biswas, H. S. ; Datta, S. Signature of misoriented bilayer graphenelike and graphanelike structure in the hydrogenated diamond-like carbon film. IEEE Trans. Plasma Sci. 2012, 40, 1789-1793.

26

Muniz, A. R. ; Maroudas, D. Opening and tuning of band gap by the formation of diamond superlattices in twisted bilayer graphene. Phys. Rev. B 2012, 86, 075404.

27

Luo, Z. Q. ; Yu, T. ; Kim, K. J. ; Ni, Z. H. ; You, Y. M; Lim, S. H. ; Shen, Z. X. ; Wang, S. Z. ; Lin, J. Y. Thickness- dependent reversible hydrogenation of graphene layers. ACS Nano 2009, 3, 1781-1788.

28

Kresse, G. ; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115.

29

Kresse, G. ; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

30

Kresse, G. ; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

31

Perdew, J. P. ; Burke, K. ; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865- 3868.

32

Kolmogorov, A. N. ; Crespi, V. H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B. 2005, 71, 235415.

33

Monkhorst, H. J. ; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B. 1976, 13, 5188.

34

Duplock, E. J. ; Scheffler, M. ; Lindan, P. J. D. Hallmark of perfect graphene. Phys. Rev. Lett. 2004, 92, 225502.

35

Samarakoon, D. K. ; Wang, X. Q. Tunable band gap in hydrogenated bilayer graphene. ACS Nano 2010, 4, 4126- 4130.

36

Lebègue, S. ; Klintenberg, M. ; Eriksson, O. ; Katsnelson, M. I. Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B 2009, 79, 245117.

Nano Research
Pages 3887-3897
Cite this article:
Dong J, Zhang K, Ding F. Hydrogenation of bilayer graphene: A small twist makes a big difference. Nano Research, 2015, 8(12): 3887-3897. https://doi.org/10.1007/s12274-015-0888-6

790

Views

8

Crossref

N/A

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 18 May 2015
Revised: 24 July 2015
Accepted: 25 August 2015
Published: 23 October 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return