AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit

Jianjun Luo1,§Feng Ru Fan1,2,§Tao Jiang1Zhiwei Wang1Wei Tang1Cuiping Zhang1Mengmeng Liu1Guozhong Cao1,3Zhong Lin Wang1,4( )
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
Collaborative Innovation Center of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
Department of Materials Science and EngineeringUniversity of WashingtonSeattleWashington98195USA
School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332USA

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The rapid development of portable and wearable electronic devices has increased demand for flexible and efficient energy harvesting and storage units. Conventionally, these are built and used separately as discrete components. Herein, we propose a simple and cost-effective laser engraving technique for fabricating a flexible self-charging micro-supercapacitor power unit (SCMPU), by integrating a triboelectric nanogenerator (TENG) and a micro-supercapacitor (MSC) array into a single device. The SCMPU can be charged directly by ambient mechanical motion. We demonstrate the ability of the SCMPU to continuously power light-emitting diodes and a commercial hygrothermograph. This investigation may promote the development of sustainable self-powered systems and provide a promising new research application for supercapacitors.

Electronic Supplementary Material

Download File(s)
nr-8-12-3934_ESM.pdf (808.6 KB)

References

1

Mannsfeld, S. C. B. ; Tee, B. C. K. ; Stoltenberg, R. M. ; Chen, C. V. H. H. ; Barman, S. ; Muir, B. V. O. ; Sokolov, A. N. ; Reese, C. ; Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859-864.

2

Kang, D. ; Pikhitsa, P. V. ; Choi, Y. W. ; Lee, C. ; Shin, S. S. ; Piao, L. F. ; Park, B. ; Suh, K. -Y. ; Kim, T. I. ; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222-226.

3

Ilievski, F. ; Mazzeo, A. D. ; Shepherd, R. E. ; Chen, X. ; Whitesides, G. M. Soft robotics for chemists. Angew. Chem. , Int. Ed. 2011, 50, 1890-1895.

4

Jeong, J. W. ; Yeo, W. H. ; Akhtar, A. ; Norton, J. J. S. ; Kwack, Y. J. ; Li, S. ; Jung, S. Y. ; Su, Y. W. ; Lee, W. ; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 2013, 25, 6839-6846.

5

Chen, L. Y. ; Tee, B. C. K. ; Chortos, A. L. ; Schwartz, G. ; Tse, V. ; Lipomi, D. J. ; Wong, H. S. P. ; McConnell, M. V. ; Bao, Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.

6

Lee, M. ; Bae, J. ; Lee, J. ; Lee, C. S. ; Hong, S. ; Wang, Z. L. Self-powered environmental sensor system driven by nanogenerators. Energy Environ. Sci. 2011, 4, 3359-3363.

7

Pang, C. ; Lee, G. Y. ; Kim, T. I. ; Kim, S. M. ; Kim, H. N. ; Ahn, S. H. ; Suh, K. Y. A flexible and highly sensitive strain- gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795-801.

8

Wang, Z. L. ; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.

9

Wang, X. D. ; Song, J. H. ; Liu, J. ; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102-105.

10

Xue, X. Y. ; Wang, S. H. ; Guo, W. X. ; Zhang, Y. ; Wang, Z. L. Hybridizing energy conversion and storage in a mechanical- to-electrochemical process for self-charging power cell. Nano Lett. 2012, 12, 5048-5054.

11

Xue, X. Y. ; Deng, P. ; He, B. ; Nie, Y. X. ; Xing, L. L. ; Zhang, Y. ; Wang, Z. L. Flexible self-charging power cell for one-step energy conversion and storage. Adv. Energy Mater. 2014, 4, 1301329.

12

Xing, L. L. ; Nie, Y. X. ; Xue, X. Y. ; Zhang, Y. PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell. Nano Energy 2014, 10, 44-52.

13

Ramadoss, A. ; Saravanakumar, B. ; Lee, S. W. ; Kim, Y. S. ; Kim, S. J. ; Wang, Z. L. Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 2015, 9, 4337-4345.

14

Fan, F. R. ; Tian, Z. Q. ; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328-334.

15

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533-9557.

16

Fan, F. R. ; Luo, J. J. ; Tang, W. ; Li, C. Y. ; Zhang, C. P. ; Tian, Z. Q. ; Wang, Z. L. Highly transparent and flexible triboelectric nanogenerators: Performance improvements and fundamental mechanisms. J. Mater. Chem. A 2014, 2, 13219-13225.

17

Grzybowski, B. A. ; Winkleman, A. ; Wiles, J. A. ; Brumer, Y. ; Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2003, 2, 241-245.

18

Zhu, G. ; Pan, C. F. ; Guo, W. X. ; Chen, C. Y. ; Zhou, Y. S. ; Yu, R. M. ; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960-4965.

19

Wang, S. H. ; Lin, Z. H. ; Niu, S. M. ; Lin, L. ; Xie, Y. N. ; Pradel, K. C. ; Wang, Z. L. Motion charged battery as sustainable flexible-power-unit. ACS Nano 2013, 7, 11263-11271.

20

Chmiola, J. ; Largeot, C. ; Taberna, P. L. ; Simon, P. ; Gogotsi, Y. Monolithic carbide-derived carbon films for micro- supercapacitors. Science 2010, 328, 480-483.

21

Gao, W. ; Singh, N. ; Song, L. ; Liu, Z. ; Reddy, A. L. M. ; Ci, L. J. ; Vajtai, R. ; Zhang, Q. ; Wei, B. Q. ; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496-500.

22

El-Kady, M. F. ; Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

23

Zhu, Y. W. ; Murali, S. ; Stoller, M. D. ; Ganesh, K. J. ; Cai, W. W. ; Ferreira, P. J. ; Pirkle, A. ; Wallace, R. M. ; Cychosz, K. A. ; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537-1541.

24

Lin, J. ; Peng, Z. W. ; Liu, Y. Y. ; Ruiz-Zepeda, F. ; Ye, R. Q. ; Samuel, E. L. G. ; Yacaman, M. J. ; Yakobson, B. I. ; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

25

Peng, Z. W. ; Lin, J. ; Ye, R. Q. ; Samuel, E. L. G. ; Tour, J. M. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3414-3419.

26

Zhu, G. ; Zhou, Y. S. ; Bai, P. ; Meng, X. S. ; Jing, Q. S. ; Chen, J. ; Wang, Z. L. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv. Mater. 2014, 26, 3788-3796.

27

Wang, S. H. ; Lin, L. ; Wang, Z. L. Nanoscale triboelectric- effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339-6346.

28

Zhang, C. ; Zhou, T. ; Tang, W. ; Han, C. B. ; Zhang, L. M. ; Wang, Z. L. Rotating-disk-based direct-current triboelectric nanogenerator. Adv. Energy Mater. 2014, 4, 1301798.

29

Kim, S. ; Gupta, M. K. ; Lee, K. Y. ; Sohn, A. ; Kim, T. Y. ; Shin, K. S. ; Kim, D. ; Kim, S. K. ; Lee, K. H. ; Shin, H. J. et al. Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 2014, 26, 3918-3925.

30

Wang, S. H. ; Lin, L. ; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436-462.

31

Pech, D. ; Brunet, M. ; Durou, H. ; Huang, P. ; Mochalin, V. ; Gogotsi, Y. ; Taberna, P. L. ; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651-654.

32

Wu, Z. S. ; Parvez, K. ; Feng, X. L. ; Müllen, K. Graphene- based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

33

Zhu, G. ; Chen, J. ; Zhang, T. J. ; Jing, Q. S. ; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

34

Lin, L. ; Xie, Y. N. ; Wang, S. H. ; Wu, W. Z. ; Niu, S. M. ; Wen, X. N. ; Wang, Z. L. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013, 7, 8266-8274.

35

Luo, J. J. ; Fan, F. R. ; Zhou, T. ; Tang, W. ; Xue, F. ; Wang, Z. L. Ultrasensitive self-powered pressure sensing system. Extreme Mech. Lett. 2015, 2, 28-36.

Nano Research
Pages 3934-3943
Cite this article:
Luo J, Fan FR, Jiang T, et al. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Research, 2015, 8(12): 3934-3943. https://doi.org/10.1007/s12274-015-0894-8

746

Views

172

Crossref

N/A

Web of Science

176

Scopus

7

CSCD

Altmetrics

Received: 17 July 2015
Revised: 06 September 2015
Accepted: 08 September 2015
Published: 12 November 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return