Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures

Yu Yang1Jingjing Liu2Xiaoqi Sun2Liangzhu Feng2Wenwen Zhu2Zhuang Liu2()Meiwan Chen1()
State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of Macau, Avenida da Universidade, Taipa, MacauChina
Institute of Functional Nano & Soft Materials Laboratory (FUNSOM)Soochow UniversitySuzhou215123China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Stimuli-activated targeted delivery systems for highly accurate treatment of tumors have received considerable attention in recent years. Herein, we reveal a light-activable cancer-targeting strategy that uses a complementary DNA sequence to hybridize and mask sgc8 aptamers conjugated onto photothermal agents such as gold nanorods or single-walled carbon nanotubes (SWNTs). Upon exposure to near-infrared (NIR) laser, localized photothermal heating of the surface of those nano-agents results in dehybridization of the double-stranded DNA and uncaging of the aptamer sequence to allow specific cancer-cell targeting. Utilizing doxorubicin-loaded SWNTs as a model system, targeted drug delivery to cancer cells activated by NIR light was achieved. This work demonstrates the concept of NIR-activable tumor-targeting delivery systems with controllable cancer-cell binding to potentially enable highly specific and efficient cancer therapy.

Electronic Supplementary Material

Download File(s)
nr-9-1-139_ESM.pdf (762 KB)

References

1

Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818-1822.

2

Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. -T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. 2011, 123, 7523-7528.

3

Sun, X. Q.; Wang, C.; Gao, M.; Hu, A. Y.; Liu, Z. Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 2015, 25, 2386-2394.

4

Gearhart, P. J.; Johnson, N. D.; Douglas, R.; Hood, L. IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature 1981, 291, 29-34.

5

Chu, T. C.; Marks Ⅲ, J. W.; Lavery, L. A.; Faulkner, S.; Rosenblum, M. G.; Ellington, A. D.; Levy, M. Aptamer: Toxin conjugates that specifically target prostate tumor cells. Cancer Res. 2006, 66, 5989-5992.

6

Farokhzad, O. C.; Jon, S.; Khademhosseini, A.; Tran, T. -N. T.; LaVan, D. A.; Langer, R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 2004, 64, 7668-7672.

7

Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689-3696.

8

Oliveira, H.; Pérez-Andrés, E.; Thevenot, J.; Sandre, O.; Berra, E.; Lecommandoux, S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release 2013, 169, 165-170.

9

Hernot, S.; Klibanov, A. L. Microbubbles in ultrasound- triggered drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60, 1153-1166.

10

Geers, B.; Lentacker, I.; Sanders, N. N.; Demeester, J.; Meairs, S.; De Smedt, S. C. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J. Control. Release 2011, 152, 249-256.

11

Kim, C.; Lee, Y.; Kim, J. S.; Jeong, J. H.; Park, T. G. Thermally triggered cellular uptake of quantum dots immobilized with poly (N-isopropylacrylamide) and cell penetrating peptide. Langmuir 2010, 26, 14965-14969.

12

Hansen, M. B.; van Gaal, E.; Minten, I.; Storm, G.; van Hest, J. C. M.; Löwik, D. W. P. M. Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes. J. Control. Release 2012, 164, 87-94.

13

Huang, Y. Z.; Jiang, Y. F.; Wang, H. Y.; Wang, J. X.; Shin, M. C.; Byun, Y.; He, H. N.; Liang, Y. Q.; Yang, V. C. Curb challenges of the "Trojan Horse" approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1299-1315.

14

Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. S.; Leamon, C. P. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 2005, 338, 284-293.

15

Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434-1436.

16

Yang, Y.; Xiang, K.; Yang, Y. -X.; Wang, Y. -W.; Zhang, X.; Cui, Y. D.; Wang, H. F.; Zhu, Q. -Q.; Fan, L. Q.; Liu, Y. F. et al. An individually coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging. Nanoscale 2013, 5, 10345-10352.

17

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773-780.

18

Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869-10939.

19

Liu, J. J.; Wang, C.; Wang, X. J.; Wang, X.; Cheng, L.; Li, Y. G.; Liu, Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384-392.

20

Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935-939.

21

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.

22

Yan, H.; Teh, C.; Sreejith, S.; Zhu, L. L.; Kwok, A.; Fang, W. Q.; Ma, X.; Nguyen, K. T.; Korzh, V.; Zhao, Y. L. Functional mesoporous silica nanoparticles for photothermal- controlled drug delivery in vivo. Angew. Chem., Int. Ed. 2012, 51, 8373-8377.

23

Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433-3440.

24

Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340-354.

25

Barhoumi, A.; Wang, W. P.; Zurakowski, D.; Langer, R. S.; Kohane, D. S. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014, 14, 3697- 3701.

26

Qiu, L. P.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett. 2015, 15, 457-463.

27

Liang, H.; Zhang, X. -B.; Lv, Y. F.; Gong, L.; Wang, R. W.; Zhu, X. Y.; Yang, R. H.; Tan, W. H. Functional DNA- containing nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 2014, 47, 1891-1901.

28

Zhu, Z.; Wu, C. C.; Liu, H. P.; Zou, Y.; Zhang, X. L.; Kang, H. Z.; Yang, C. J.; Tan, W. H. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew. Chem. 2010, 122, 1070-1074.

29

Wang, J.; Zhu, G. Z.; You, M. X.; Song, E. Q.; Shukoor, M. I.; Zhang, K. J.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z. et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070-5077.

30

Vankayala, R.; Huang, Y. K.; Kalluru, P.; Chiang, C. S.; Hwang, K. C. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 2014, 10, 1612-1622.

31

Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32, 1110-1120.

32

Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600-11605.

33

Jang, B.; Kim, Y. S.; Choi, Y. Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation. Small 2011, 7, 265-270.

34

Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325-337.

35

Bhaumik, J.; Mittal, A. K.; Banerjee, A.; Chisti, Y.; Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 2015, 8, 1373-1394.

36

Ding, H.; Yong, K. -T.; Roy, I.; Pudavar, H. E.; Law, W. C.; Bergey, E. J.; Prasad, P. N. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J. Phys. Chem. C2007, 111, 12552-12557.

37

Wang, F.; Liu, J. W. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide. Nanoscale 2013, 5, 12375-12382.

38

Samorì, C.; Ali-Boucetta, H.; Sainz, R.; Guo, C.; Toma, F. M.; Fabbro, C.; Da Ros, T.; Prato, M.; Kostarelos, K.; Bianco, A. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem. Commun. 2010, 46, 1494-1496.

39

Tian, B.; Wang, C.; Zhang, S.; Feng, L. Z.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5, 7000-7009.

40

Feng, L. Z.; Yang, X. Z.; Shi, X. Z.; Tan, X. F.; Peng, R.; Wang, J.; Liu, Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 2013, 9, 1989-1997.

Nano Research
Pages 139-148
Cite this article:
Yang Y, Liu J, Sun X, et al. Near-infrared light-activated cancer cell targeting and drug delivery with aptamer-modified nanostructures. Nano Research, 2016, 9(1): 139-148. https://doi.org/10.1007/s12274-015-0898-4
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return