Graphical Abstract

Stimuli-activated targeted delivery systems for highly accurate treatment of tumors have received considerable attention in recent years. Herein, we reveal a light-activable cancer-targeting strategy that uses a complementary DNA sequence to hybridize and mask sgc8 aptamers conjugated onto photothermal agents such as gold nanorods or single-walled carbon nanotubes (SWNTs). Upon exposure to near-infrared (NIR) laser, localized photothermal heating of the surface of those nano-agents results in dehybridization of the double-stranded DNA and uncaging of the aptamer sequence to allow specific cancer-cell targeting. Utilizing doxorubicin-loaded SWNTs as a model system, targeted drug delivery to cancer cells activated by NIR light was achieved. This work demonstrates the concept of NIR-activable tumor-targeting delivery systems with controllable cancer-cell binding to potentially enable highly specific and efficient cancer therapy.
Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818-1822.
Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. -T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. 2011, 123, 7523-7528.
Sun, X. Q.; Wang, C.; Gao, M.; Hu, A. Y.; Liu, Z. Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 2015, 25, 2386-2394.
Gearhart, P. J.; Johnson, N. D.; Douglas, R.; Hood, L. IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature 1981, 291, 29-34.
Chu, T. C.; Marks Ⅲ, J. W.; Lavery, L. A.; Faulkner, S.; Rosenblum, M. G.; Ellington, A. D.; Levy, M. Aptamer: Toxin conjugates that specifically target prostate tumor cells. Cancer Res. 2006, 66, 5989-5992.
Farokhzad, O. C.; Jon, S.; Khademhosseini, A.; Tran, T. -N. T.; LaVan, D. A.; Langer, R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 2004, 64, 7668-7672.
Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689-3696.
Oliveira, H.; Pérez-Andrés, E.; Thevenot, J.; Sandre, O.; Berra, E.; Lecommandoux, S. Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release 2013, 169, 165-170.
Hernot, S.; Klibanov, A. L. Microbubbles in ultrasound- triggered drug and gene delivery. Adv. Drug Deliv. Rev. 2008, 60, 1153-1166.
Geers, B.; Lentacker, I.; Sanders, N. N.; Demeester, J.; Meairs, S.; De Smedt, S. C. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J. Control. Release 2011, 152, 249-256.
Kim, C.; Lee, Y.; Kim, J. S.; Jeong, J. H.; Park, T. G. Thermally triggered cellular uptake of quantum dots immobilized with poly (N-isopropylacrylamide) and cell penetrating peptide. Langmuir 2010, 26, 14965-14969.
Hansen, M. B.; van Gaal, E.; Minten, I.; Storm, G.; van Hest, J. C. M.; Löwik, D. W. P. M. Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes. J. Control. Release 2012, 164, 87-94.
Huang, Y. Z.; Jiang, Y. F.; Wang, H. Y.; Wang, J. X.; Shin, M. C.; Byun, Y.; He, H. N.; Liang, Y. Q.; Yang, V. C. Curb challenges of the "Trojan Horse" approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1299-1315.
Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. S.; Leamon, C. P. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 2005, 338, 284-293.
Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434-1436.
Yang, Y.; Xiang, K.; Yang, Y. -X.; Wang, Y. -W.; Zhang, X.; Cui, Y. D.; Wang, H. F.; Zhu, Q. -Q.; Fan, L. Q.; Liu, Y. F. et al. An individually coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging. Nanoscale 2013, 5, 10345-10352.
Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773-780.
Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869-10939.
Liu, J. J.; Wang, C.; Wang, X. J.; Wang, X.; Cheng, L.; Li, Y. G.; Liu, Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384-392.
Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935-939.
Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.
Yan, H.; Teh, C.; Sreejith, S.; Zhu, L. L.; Kwok, A.; Fang, W. Q.; Ma, X.; Nguyen, K. T.; Korzh, V.; Zhao, Y. L. Functional mesoporous silica nanoparticles for photothermal- controlled drug delivery in vivo. Angew. Chem., Int. Ed. 2012, 51, 8373-8377.
Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433-3440.
Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340-354.
Barhoumi, A.; Wang, W. P.; Zurakowski, D.; Langer, R. S.; Kohane, D. S. Photothermally targeted thermosensitive polymer-masked nanoparticles. Nano Lett. 2014, 14, 3697- 3701.
Qiu, L. P.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett. 2015, 15, 457-463.
Liang, H.; Zhang, X. -B.; Lv, Y. F.; Gong, L.; Wang, R. W.; Zhu, X. Y.; Yang, R. H.; Tan, W. H. Functional DNA- containing nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 2014, 47, 1891-1901.
Zhu, Z.; Wu, C. C.; Liu, H. P.; Zou, Y.; Zhang, X. L.; Kang, H. Z.; Yang, C. J.; Tan, W. H. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew. Chem. 2010, 122, 1070-1074.
Wang, J.; Zhu, G. Z.; You, M. X.; Song, E. Q.; Shukoor, M. I.; Zhang, K. J.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z. et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070-5077.
Vankayala, R.; Huang, Y. K.; Kalluru, P.; Chiang, C. S.; Hwang, K. C. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 2014, 10, 1612-1622.
Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32, 1110-1120.
Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 2005, 102, 11600-11605.
Jang, B.; Kim, Y. S.; Choi, Y. Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation. Small 2011, 7, 265-270.
Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325-337.
Bhaumik, J.; Mittal, A. K.; Banerjee, A.; Chisti, Y.; Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 2015, 8, 1373-1394.
Ding, H.; Yong, K. -T.; Roy, I.; Pudavar, H. E.; Law, W. C.; Bergey, E. J.; Prasad, P. N. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J. Phys. Chem. C2007, 111, 12552-12557.
Wang, F.; Liu, J. W. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide. Nanoscale 2013, 5, 12375-12382.
Samorì, C.; Ali-Boucetta, H.; Sainz, R.; Guo, C.; Toma, F. M.; Fabbro, C.; Da Ros, T.; Prato, M.; Kostarelos, K.; Bianco, A. Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. Chem. Commun. 2010, 46, 1494-1496.
Tian, B.; Wang, C.; Zhang, S.; Feng, L. Z.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5, 7000-7009.
Feng, L. Z.; Yang, X. Z.; Shi, X. Z.; Tan, X. F.; Peng, R.; Wang, J.; Liu, Z. Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 2013, 9, 1989-1997.