AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Kinetics of defect formation in chemically vapor deposited (CVD) graphene during laser irradiation: The case of Raman investigation

Giampiero Amato1Gianluca Milano2Umberto Vignolo2Ettore Vittone2( )
Quantum Research LaboratoryINRIMdelle Cacce 91TorinoItaly
Department of PhysicsNIS Research CenterUniversity of Torinovia Pietro Giuria 110125TorinoItaly
Show Author Information

Graphical Abstract

Abstract

The effect of laser irradiation on chemically vapor deposited (CVD) graphene was studied by analyzing the temporal evolution of Raman spectra acquired under various illumination conditions. The spectra showed that the normalized intensity of the defect-related peak increases with the square root of the exposure time and varies almost linearly with the laser power density. Furthermore, the hardness of graphene to radiation damage depends on its intrinsic structural quality. The results suggest that, contrary to the common belief, micro-Raman spectroscopy cannot be considered a noninvasive tool for the characterization of graphene. The experimental observations are compatible with a model that we derived from the interpretative approach of the Staebler–Wronski effect in hydrogenated amorphous silicon; this approach assumes that the recombination of photoexcited carriers induces the breaking of weak C–C bonds.

References

1

Thompson, C. V. Solid-state dewetting of thin films. Ann. Rev. Mater. Res. 2012, 42, 399-434.

2

Stutzmann, M.; Jackson, W. B.; Tsai, C. C. Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. Phys. Rev. B 1985, 32, 23-47.

3

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano, 2011, 5, 26-41.

4

Zan, R.; Ramasse, Q. M.; Bangert, U.; Novoselov, K. S. Graphene reknits its holes. Nano Lett. 2012, 12, 3936-3940.

5

Kim, K.; Lee, H. -B. -R.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M. -G.; Pang, C. A.; Ahn, C.; Bent, S. F.; Bao, Z. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 2014, 5, 4781.

6

Van Lam, D.; Kim, S. M.; Cho, Y.; Kim, J. -H.; Lee, H. J.; Yang, J. -M.; Lee, S. -M. Healing defective CVD-graphene through vapor phase treatment. Nanoscale 2014, 6, 5639- 5644.

7

Ferrari, A. C.; Basco, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.

8

Jorio, A.; Dresselhaus, M. S.; Saito, R.; Dresselhaus, G. Raman Spectroscopy in Graphene Related Systems; John Wiley &Sons: WeinHeim, 2011.

9

Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273-291.

10

Tiberj, A.; Rubio-Roy, M.; Paillet, M.; Huntzinger, J. -R.; Landois, P.; Mikolasek, M.; Contreras, S.; Sauvajol, J. -L.; Dujardin, E.; Zahab, A. -A. Reversible optical doping of graphene. Sci. Rep. 2013, 3, 2355.

11

Krauss, B.; Lohmann, T.; Chae, D. -H.; Haluska, M.; von Klitzing, K.; Smet, J. H. Laser-induced disassembly of a graphene single crystal into a nanocrystalline network. Phys. Rev. B 2009, 79, 165428.

12

Han, G. H.; Chae, S. J.; Kim, E. S.; Güneş, F.; Lee, I. H.; Lee, S. W.; Lee, S. Y.; Lim, S. C.; Jeong, H. K.; Jeong, M. S. et al. Laser thinning for monolayer graphene formation: Heat sink and interference effect. ACS Nano 2011, 5, 263-268.

13

Piazzi, M.; Croin, L.; Vittone, E.; Amato, G. Laser-induced etching of few-layer graphene synthesized by rapid-chemical vapour deposition on Cu thin films. Springerplus 2012, 1, 52.

14

Chen, S. S.; Ji, H. X.; Chou, H.; Li, Q. Y.; Li, H. Y.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W. W.; Ruoff, R. S. Millimeter- size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv. Mater. 2013, 25, 2062-2065.

15

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

16

Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273-291.

17

Jorio, A. Raman spectroscopy in graphene-based systems: Prototypes for nanoscience and nanometrology. ISRN Nanotechnol. 2012, 2012, Article ID 234216.

18

Okada, S. Energetics of nanoscale graphene ribbons: Edge geometries and electronic structures. Phys. Rev. B 2008, 77, 041408.

19

Crow, E. L.; Shimizu, K. Lognormal Distributions: Theory and Applications; CRC Press: Boca Raton, 1987.

20

Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645-2649.

21

Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for graphene: Graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 2012, 108, 086804.

22

Wang, J. Y.; Deng, S. B.; Liu, Z. F.; Liu, Z. R. The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev. 2015, 2, 22-39.

23

Farjam, M. Visualizing the influence of point defects on the electronic band structure of graphene. J. Phys. : Condens. Mat. 2014, 26, 155502.

Nano Research
Pages 3972-3981
Cite this article:
Amato G, Milano G, Vignolo U, et al. Kinetics of defect formation in chemically vapor deposited (CVD) graphene during laser irradiation: The case of Raman investigation. Nano Research, 2015, 8(12): 3972-3981. https://doi.org/10.1007/s12274-015-0900-1

685

Views

20

Crossref

N/A

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 30 June 2015
Revised: 06 September 2015
Accepted: 19 September 2015
Published: 29 October 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return