Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid problems caused by metal-containing catalysts, for example, environmental pollution by heavy metals and depletion of rare metal resources. Herein, an active and durable graphene carbocatalyst is presented for the carbocatalytic conversion of 4-nitrophenol to 4-aminophenol at ambient temperature. The carbocatalyst was prepared via a mild, water-based reaction between L-ascorbic acid (AA) and graphene oxide (GO) and did not involve any other reactants. During the structure and catalytic property optimization, a series of carbocatalysts were fabricated at various reaction temperatures and AA/GO ratios. Using several characterization techniques, detailed structural features of these carbocatalysts were identified. Possible active species and sites on the carbocatalysts were also identified such as certain oxygen-containing groups, the π-conjugated system, and graphene sheet edges. In addition, the synergistic effect between these active species and sites on the resulting catalytic activity is highlighted. Furthermore, we clarified the origin of the high stability and durability of the optimized carbocatalyst. The work presented here aids the design of high-performance carbocatalysts for hydrogenation reactions, and increases understanding of the structural and mechanistic aspects at the molecular level that lead to high catalyst activity and durability.
Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One- pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871-879.
Neumann, C. C. M.; Laborda, E.; Tschulik, K.; Ward, K. R.; Compton, R. G. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape. Nano Res. 2013, 6, 511-524.
Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205-1214.
Guo, H. F.; Yan, X. L.; Zhi, Y.; Li, Z. W.; Wu, C.; Zhao, C. L.; Wang, J.; Yu, Z. X.; Ding, Y.; He, W. et al. Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes. Nano Res. 2015, 8, 1365-1372.
Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W.; Miao, D. G.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions - A review. J. Mater. Chem. A 2015, 3, 11157-11182.
Dreyer, D. R.; Jia, H. -P.; Bielawski, C. W. Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. 2010, 122, 6965-6968.
Sun, L.; Zhang, Z. J.; Dang, H. X. A novel method for preparation of silver nanoparticles. Mater. Lett. 2003, 57, 3874-3879.
Wang, Q. Y.; Zhao, B.; Li, G. F.; Zhou, R. X. Application of rare earth modified Zr-based ceria-zirconia solid solution in three-way catalyst for automotive emission control. Environ. Sci. Technol. 2010, 44, 3870-3875.
Biffis, A.; Zecca, M.; Basato, M. Metallic palladium in the heck reaction: Active catalyst or convenient precursor? Eur. J. Inorg. Chem. 2001, 2001, 1131-1133.
Kong, X. -K.; Sun, Z. -Y.; Chen, M.; Chen, C. -L.; Chen, Q. -W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energ. Environ. Sci. 2013, 6, 3260-3266.
Su, C. L.; Acik, M.; Takai, K.; Lu, J.; Hao, S. -J.; Zheng, Y.; Wu, P. P.; Bao, Q. L.; Enoki, T.; Chabal, Y. J. et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat. Commun. 2012, 3, 1298.
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev. 2014, 114, 6179-6212.
Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W.; Kong, Y. Metal-free graphene-based catalyst—insight into the catalytic activity: A short review. Appl. Catal. A: Gen. 2015, 492, 1-9.
Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275-1279.
Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327-331.
Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W.; Lu, X. K. Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: Label-free selective detection of tetrahydrofuran. Molecules 2014, 19, 7459-7479.
Hu, H. W.; Allan, C. C. K.; Li, J. H.; Kong, Y.; Wang, X. W.; Xin, J. H.; Hu, H. Multifunctional organically modified graphene with super-hydrophobicity. Nano Res. 2014, 7, 418-433.
Hu, H. W.; Xin, J. H.; Hu, H. PAM/graphene/Ag ternary hydrogel: Synthesis, characterization and catalytic application. J. Mater. Chem. A 2014, 2, 11319-11333.
Hu, H. -W.; Xin, J. H.; Hu, H. Highly efficient graphene- based ternary composite catalyst with polydopamine layer and copper nanoparticles. ChemPlusChem 2013, 78, 1483- 1490.
Eswaraiah, V.; Jyothirmayee Aravind, S. S.; Ramaprabhu, S. Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation. J. Mater. Chem. 2011, 21, 6800-6803.
Machado, B. F.; Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2012, 2, 54-75.
Peng, W. C.; Li, X. Y. Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst. Nano Res. 2013, 6, 286-292.
Fu, H. Y.; Zhu, D. Q. Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions. Environ. Sci. Technol. 2013, 47, 4204-4210.
Kong, X. -K.; Chen, Q. -W.; Lun, Z. -Y. Probing the influence of different oxygenated groups on graphene oxide's catalytic performance. J. Mater. Chem. A 2014, 2, 610-613.
Han, C.; Chen, Z.; Zhang, N.; Colmenares, J. C.; Xu, Y. -J. Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: Low temperature synthesis and enhanced photocatalytic performance. Adv. Funct. Mater. 2015, 25, 221-229.
Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew. Chem., Int. Ed. 2006, 45, 813-816.
Ji, Z. Y.; Shen, X. P.; Zhu, G. X.; Zhou, H.; Yuan, A. H. Reduced graphene oxide/nickel nanocomposites: Facile synthesis, magnetic and catalytic properties. J. Mater. Chem. 2012, 22, 3471-3477.
Zhu, Y. -P.; Liu, Y. -L.; Ren, T. -Z.; Yuan, Z. -Y. Mesoporous nickel phosphate/phosphonate hybrid microspheres with excellent performance for adsorption and catalysis. RSC Adv. 2014, 4, 16018-16021.
Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem. Mater. 2007, 19, 1062-1069.
Gao, Y. Y.; Ding, X. B.; Zheng, Z. H.; Cheng, X.; Peng, Y. X. Template-free method to prepare polymer nanocapsules embedded with noble metal nanoparticles. Chem. Commun. 2007, 3720-3722.
Li, J.; Liu, C. -Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426-8430.
Sun, Y.; Xu, L.; Yin, Z. L.; Song, X. Y. Synthesis of copper submicro/nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenol reduction. J. Mater. Chem. A 2013, 1, 12361-12370.
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.
Strathmann, T. J.; Myneni, S. C. B. Speciation of aqueous Ni(II)-carboxylate and Ni(II)-fulvic acid solutions: Combined ATR-FTIR and XAFS analysis. Geochim. Cosmochim. Acta 2004, 68, 3441-3458.
Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wang, Y. S.; Chen, Y. S. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710-2714.
Liu, J. C.; Bai, H. W.; Wang, Y. J.; Liu, Z. Y.; Zhang, X. W.; Sun, D. D. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater. 2010, 20, 4175-4181.
Wu, Q.; Sun, Y. Q.; Bai, H.; Shi, G. Q. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties. Phys. Chem. Chem. Phys. 2011, 13, 11193-11198.
Wu, S. C.; Wen, G. D.; Liu, X. M.; Zhong, B. W.; Su, D. S. Model molecules with oxygenated groups catalyze the reduction of nitrobenzene: Insight into carbocatalysis. ChemCatChem 2014, 6, 1558-1561.
Hu, H. -W.; Chen, G. -H.; Fang, M.; Zhao, W. -F. Modification of graphite oxide nanoparticles prepared via electrochemically oxidizing method. Synth. Met. 2009, 159, 1505-1507.
Hu, H. W.; Chen, G. H. Electrochemically modified graphite nanosheets and their nanocomposite films with poly(vinyl alcohol). Polym. Compos. 2010, 31, 1770-1775.
Enoki, T.; Kobayashi, Y.; Fukui, K. -I. Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 2007, 26, 609-645.
Lee, G.; Cho, K. Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Phys. Rev. B 2009, 79, 165440.
Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009, 8, 235-242.
Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36-41.
Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.
Knight, D. S.; White, W. B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 1989, 4, 385-393.
Thomberg, T.; Kurig, H.; Jänes, A.; Lust, E. Mesoporous carbide-derived carbons prepared from different chromium carbides. Micropor. Mesopor. Mater. 2011, 141, 88-93.
Cui, P.; Lee, J.; Hwang, E.; Lee, H. One-pot reduction of graphene oxide at subzero temperatures. Chem. Commun. 2011, 47, 12370-12372.
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.
Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High- throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25-29.
Vinodgopal, K.; Neppolian, B.; Salleh, N.; Lightcap, I. V.; Grieser, F.; Ashokkumar, M.; Ding, T. T.; Kamat, P. V. Dual-frequency ultrasound for designing two dimensional catalyst surface: Reduced graphene oxide-Pt composite. Colloids Surf. A 2012, 409, 81-87.
Zhu, Y.; Bai, Y. -J.; Lun, N.; Qi, Y. -X.; Liu, R.; Zhu, H. -L. Low temperature preparation of hollow carbon nano- polyhedrons with uniform size, high yield and graphitization. Mater. Chem. Phys. 2012, 134, 639-645.
Zhang, X. Q.; Feng, Y. Y.; Huang, D.; Li, Y.; Feng, W. Investigation of optical modulated conductance effects based on a graphene oxide-azobenzene hybrid. Carbon 2010, 48, 3236-3241.
Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, H.; Yao, J. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008, 112, 8192-8195.
McAllister, M. J.; Li, J. -L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396-4404.
Zhang, Y. W.; Liu, S.; Lu, W. B.; Wang, L.; Tian, J. Q.; Sun, X. P. In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catal. Sci. Technol. 2011, 1, 1142-1144.
Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469-480.
Fei, B.; Qian, B. T.; Yang, Z. Y.; Wang, R. H.; Liu, W. C.; Mak, C. L.; Xin, J. H. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 2008, 46, 1795-1797.