AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Complete thermoelectric benchmarking of individual InSb nanowires using combined micro-Raman and electric transport analysis

Sara Yazji1,2Eric A. Hoffman1,2Daniele Ercolani3Francesco Rossella3Alessandro Pitanti3Alessandro Cavalli1Stefano Roddaro3Gerhard Abstreiter1,2Lucia Sorba3Ilaria Zardo1,4( )
Walter Schottky Institut & Physik DepartmentTechnische Universität MünchenGarchingD-85748Germany
Institute for Advanced StudyTechnische Universität MünchenGarchingD-85748Germany
NESTIstituto Nanoscienze-CNR and Scuola Normale SuperiorePisaI-56127Italy
Department of PhysicsUniversity of BaselBaselCH-4056Switzerland
Show Author Information

Graphical Abstract

Abstract

Nanowires (NWs) are ideal nanostructures for exploring the effects of low dimensionality and thermal conductivity suppression on thermoelectric behavior. However, it is challenging to accurately measure temperature gradients and heat flow in such systems. Here, using a combination of spatially resolved Raman spectroscopy and transport measurements, we determine all the thermoelectric properties of single Se-doped InSb NWs and quantify the figure of merit ZT. The measured laser-induced heating in the NWs and associated electrical response are well described by a 1D heat equation model. Our method allows the determination of the thermal contact resistances at the source and drain electrodes of the NW, which are negligible in our system. The measured thermoelectric parameters of InSb NWs agree well with those obtained based on field-effect transistor Seebeck measurements.

Electronic Supplementary Material

Download File(s)
nr-8-12-4048_ESM.pdf (3 MB)

References

1

Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727-12731.

2

Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631-16634.

3

Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777-778.

4

Heremans, J. P.; Dresselhaus, M. S.; Bell, L. E.; Morelli, D. T. When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 2013, 8, 471-473.

5

Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457-1461.

6

DiSalvo, F. J. Thermoelectric cooling and power generation. Science 1999, 285, 703-706.

7

Zhao, L. -D.; Lo, S. -H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid V. P.; Kanatzidis M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-377.

8

Roh, J. W.; Jang S. Y.; Kang, J.; Lee, S.; Noh, J. -S.; Kim, W.; Park, J.; Lee, W. Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires. Appl. Phys. Lett. 2010, 96, 103101.

9

Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934-2936.

10

Zhou, F.; Moore, A. L.; Bolinsson, J.; Persson, A.; Fröberg, L.; Pettes, M. T.; Kong, H. J.; Rabenberg, L.; Caroff, P.; Stewart, D. A. et al. Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Phys. Rev. B 2011, 83, 205416.

11

Doerk, G. S.; Carraro, C.; Maboudian, R. Single nanowire thermal conductivity measurements by Raman thermography. ACS Nano 2010, 4, 4908-4914.

12

Soini, M.; Zardo, I.; Uccelli, E.; Funk, S.; Koblmüller, G.; Fontcuberta i Morral, A.; Abstreiter, G. Thermal conductivity of GaAs nanowires studied by micro-raman spectroscopy combined with laser heating. Appl. Phys. Lett. 2010, 97, 263107.

13

Zhou, F.; Seol, J. H.; Shi, L.; Ye, Q. L.; Scheffler, R. One-dimensional electron transport and thermopower in an individual InSb nanowire. J. Phys. : Condens. Matter 2006, 18, 9651-9657.

14

Shapira, E.; Tsukernik, A.; Selzer, Y. Thermopower measurements on individual 30 nm nickel nanowires. Nanotechnology 2007, 18, 485703.

15

Roddaro, S.; Ercolani, D.; Safeen, M. A.; Suomalainen, S.; Rossella, F.; Giazotto, F.; Sorba, L.; Beltram, F. Giant thermovoltage in single InAs nanowire field-effect transistors. Nano Lett. 2013, 13, 3638-3642.

16

Roddaro, S.; Ercolani, D.; Safeen, M. A.; Rossella, F.; Piazza, V.; Giazotto, F.; Sorba, L.; Beltram, F. Large thermal biasing of individual gated nanostructures. Nano Res. 2014, 7, 579-587.

17

Shi, L.; Li, D. Y.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 2003, 125, 881-888.

18

Shi, L. Thermal and thermoelectric transport in nanostructures and low-dimensional systems. Nanosc. Microsc. Therm. 2012, 16, 79-116.

19

Zhou, F.; Perrson, A.; Samuelson, L.; Linke, H.; Shi, L. Thermal resistance of a nanoscale point contact to an indium arsenide nanowire. Appl. Phys. Lett. 2011, 99, 063110.

20

Mingo, N. Thermoelectric figure of merit and maximum power factor in III-V semiconductor nanowires. Appl. Phys. Lett. 2004, 84, 2652-2654.

21

Stuckes, A. D. Thermal conductivity of indium antimonide. Phys. Rev. 1957, 107, 427-428.

22

Bowers, R.; Ure, R. W. Jr.; Bauerle, J. E.; Cornish, A. J. InAs and InSb as thermoelectric materials. J. Appl. Phys. 1959, 30, 930-934.

23

Mielczarek, E. V.; Frederiske, H. P. R. Thermal conductivity of indium antimonide at low temperatures. Phys. Rev. 1959, 115, 888-891.

24

Steigmeier, E. Wärmeleitfähigkeit, elektrische leitfähigkeit, Hall-effekt und thermospannung von InSb. Helv. Phys. Acta. 1961, 34, 1-28.

25

Holland, M. G. Phonon scattering in semiconductors from thermal conductivity studies. Phys. Rev. 1964, 134, A471-A480.

26

Bhandari, C. M.; Verma, G. S. Role of longitudinal and transverse phonons in lattice thermal conductivity of GaAs and InSb. Phys. Rev. 1968, 176, 1112.

27

Kosarev, V. V.; Tamarin, P. V.; Shalyt, S. S. Thermal conductivity of indium antimonide at low temperatures. Phys. Stat. Solidi (b) 1971, 44, 525-530.

28

Nakwaski, W. Thermal conductivity of binary, ternary, and quaternary III-V compounds. J. Appl. Phys. 1988, 64, 159-166.

29

Yamaguchi, S.; Matsumoto, T.; Yamazaki, J.; Kaiwa, N.; Yamamoto, A. Thermoelectric properties and figure of merit of a Te-Doped InSb bulk single crystal. Appl. Phys. Lett. 2005, 87, 201902.

30

Vedernikov, M. V.; Uryupin, O. N.; Goltsman, B. M.; Ivanov, Y. V.; Kumzerov, Y. A. Experimental thermopower of quantum wires. MRS Proc. 2001, 691, DOI: 10.1557/PROC-691-G8.34.

31

Kumzerov, Y. A.; Smirnov, I. A.; Firsov, Y. A.; Parfen'eva, L. S.; Misiorek, H.; Mucha, J.; Jezowski, A. Thermal conductivity of ultrathin InSb semiconductor nanowires with properties of the luttinger liquid. Phys. Solid State 2006, 48, 1584-1590.

32

Seol, J. H.; Moore, A. L.; Saha, S. K.; Zhou, F.; Shi, L.; Ye, Q. L.; Scheffler, R.; Mingo, N.; Yamada, T. Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method. J. Appl. Phys. 2007, 101, 023706.

33

Jurgilaitis, A.; Enquist, H.; Andreasson, B. P.; Persson, A. I. H.; Borg, B. M.; Caroff, P.; Dick, K. A.; Harb, M.; Linke, H.; Nüske, R. et al. Time-resolved X-ray diffraction investigation of the modified phonon dispersion in InSb nanowires. Nano Lett. 2014, 14, 541-546.

34

Zhou, F.; Moore, A. L.; Pettes, M. T.; Lee, Y.; Seol, J. H.; Ye, Q. L.; Rabenberg, L.; Shi, L. Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires. J. Phys. D: Appl. Phys. 2010, 43, 025406.

35

Costa, S. C.; Pizani, P. S.; Rino, J. P. Molecular dynamics simulation of dynamical properties of InSb. Phys. Rev. B 2003, 68, 073204.

36

Liarokapis, E.; Anastassakis, E. Light scattering of InSb at high temperatures. Phys. Rev. B 1984, 30, 2270-2272.

37

Zardo, I.; Conesa-Boj, S.; Peiro, F.; Morante, J. R.; Arbiol, J.; Uccelli, E.; Abstreiter, G.; Fontcuberta i Morral, A. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects. Phys. Rev. B 2009, 80, 245324.

38

Doerk, G. S.; Carraro, C.; Maboudian, R. Temperature dependence of Raman spectra for individual silicon nanowires. Phys. Rev. B 2009, 80, 073306.

39

Pinczuk A.; Burstein, E. Raman scattering from InSb surfaces at photon energies near the E1 energy gap. Phys. Rev. Lett. 1968, 21, 1073-1075.

40

Wang, X.; Xu, X. Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 2001, 73, 107-114.

41

Lo, H. W; Compaan, A. Raman measurements of temperature during cw laser heating of silicon. J. Appl. Phys. 1980, 51, 1565-1568.

42

Swinkels, M. Y.; van Delft, M. R.; Oliveira, D. S.; Cavalli, A.; Zardo, I.; van der Heijden, R. W.; Bakkers, E. P. A. M. Diameter dependence of the thermal conductivity of InAs nanowires. Nanotechnology 2015, 26, 385401.

43

Oskooi, A. F.; Roundy, D.; Ibanescu, M.; Bermel, P.; Joannopoulos, J. D.; Johnson, S. G. MEEP: A flexible free- software package for electromagnetic simulations by the FDTD method. Comp. Phys. Commun. 2010, 181, 687-702.

44
Seol, J. H. Thermal and Thermoelectric Measurements of Silicon Nanoconstrictions, Supported Graphene, and Indium Antimonide Nanowires. Ph. D. Dissertation, University of Texas, TX, USA, 2009.
45

Pettersson, H.; Trägårdh, J.; Persson, A. I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229-232.

46

Thunich, S.; Prechtel, L.; Spirkoska, D.; Abstreiter, G.; Fontcuberta i Morral, A.; Holleitner, A. W. Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett. 2009, 95, 083111.

47

Varghese, B.; Tamang, R.; Tok, E. S.; Mhaisalkar, S. G.; Sow, C. H. Photothermoelectric effects in localized photocurrent of individual VO2 nanowires. J. Phys. Chem. C 2010, 114, 15149-15156.

48

Prechtel, L.; Padilla, M.; Erhard, N.; Karl, H.; Abstreiter, G.; Fontcuberta i Morral, A.; Holleitner, A. W. Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires. Nano Lett. 2012, 12, 2337-2341.

49

Erhard, N.; Seifert, P.; Prechtel, L; Hertenberger, S.; Karl, H.; Abstreiter, G.; Koblmüller, G.; Holleitner, A. W. Ultrafast photocurrents and THz generation in single InAs-nanowires. Ann. Phys. 2013, 525, 180-188.

50

St-Antoine, B. C.; Ménard, D.; Martel, R. Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 2009, 9, 3503-3508.

51

St-Antoine, B. C.; Ménard, D.; Martel, R. Photothermoelectric effects in single-walled carbon nanotube films: Reinterpreting scanning photocurrent experiments. Nano Res. 2012, 5, 73-81.

52

Prechtel, L.; Song, L.; Manus, S.; Schuh, D.; Wegscheider, W.; Holleitner, A. W. Time-resolved picosecond photocurrents in contacted carbon nanotubes. Nano Lett. 2011, 11, 269-272.

53

Prechtel, L.; Song, L.; Schuh, D.; Ajayan, P.; Wegscheider, W.; Holleitner, A. W. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nat. Commun. 2012, 3, 646.

54

Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358-363.

55

Fu, D. Y.; Zou, J. J.; Wang, K.; Zhang, R.; Yu, D.; Wu, J. Q. Electrothermal dynamics of semiconductor nanowires under local carrier modulation. Nano Lett. 2011, 11, 3809-3815.

56

Yazji, S.; Zardo, I.; Soini, M.; Postorino, P.; Fontcuberta i Morral, A.; Abstreiter, G. Local modification of GaAs nanowires induced by laser heating. Nanotechnology 2011, 22, 325701.

Nano Research
Pages 4048-4060
Cite this article:
Yazji S, Hoffman EA, Ercolani D, et al. Complete thermoelectric benchmarking of individual InSb nanowires using combined micro-Raman and electric transport analysis. Nano Research, 2015, 8(12): 4048-4060. https://doi.org/10.1007/s12274-015-0906-8

740

Views

33

Crossref

N/A

Web of Science

33

Scopus

2

CSCD

Altmetrics

Received: 06 May 2015
Revised: 09 September 2015
Accepted: 28 September 2015
Published: 09 November 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return