AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A progressive route for tailoring electrical transport in MoS2

Muhammad Arslan Shehzad1,2Sajjad Hussain1,2Muhammad Farooq Khan1,3Jonghwa Eom1,3Jongwan Jung1,2Yongho Seo1,2( )
Graphene Research InstituteSejong UniversitySeoul143-747Republic of Korea
Faculty of Nanotechnology & Advanced Materials Engineering and Graphene Research InstituteSejong UniversitySeoul143-747Republic of Korea
Department of Physics and Graphene Research InstituteSejong UniversitySeoul143-747Republic of Korea
Show Author Information

Graphical Abstract

Abstract

Typically, molybdenum disulfide (MoS2) synthesized by chemical vapor deposition (CVD) is polycrystalline; as a result, the scattering of charge carriers at grain boundaries can lead to performances lower than those observed in exfoliated single-crystal MoS2. Until now, the electrical properties of grain boundaries have been indirectly studied without accurate knowledge of their location. Here, we present a technique to measure the electrical behavior of individual grain boundaries in CVD-grown MoS2, imaged with the help of aligned liquid crystals. Unexpectedly, the electrical conductance decreased by three orders of magnitude for the grain boundaries with the lowest on/off ratio. Our study provides a useful technique to fabricate devices on a single-crystal area, using optimized growth conditions and device geometry. The photoresponse, studied within a MoS2 single grain, showed that the device responsivity was comparable with that of the exfoliated MoS2-based photodetectors.

Electronic Supplementary Material

Download File(s)
nr-9-2-380_ESM.pdf (4.4 MB)

References

1

Zhu, W. J.; Low, T.; Lee, Y. H.; Wang, H.; Farmer, D. B.; Kong, J.; Xia, F. N.; Avouris, P. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 2014, 5, 3087.

2

Liu, H.; Si, M. W.; Deng, Y. X.; Neal, A. T.; Du, Y. C.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers. ACS Nano 2014, 8, 1031-1038.

3

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

4

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

5

Ionescu, R.; Wang, W.; Chai, Y.; Mutlu, Z.; Ruiz, I.; Favors, Z.; Wickramaratne, D.; Neupane, M.; Zavala, L.; Lake, R. et al. Synthesis of atomically thin MoS2 triangles and hexagrams and their electrical transport properties. IEEE Trans. Nanotechnol. 2014, 13, 749-754.

6

Ionescu, R.; George, A.; Ruiz, I.; Favors, Z.; Mutlu, Z.; Liu, C.; Ahmed, K.; Wu, R.; Jeong, J. S.; Zavala, L. et al. Oxygen etching of thick MoS2 films. Chem. Commun. 2014, 50, 11226-11229.

7

Holt, D. B.; Yacobi, B. G. Extended Defects in Semiconductors: Electronic Properties, Device Effects And Structures; Cambridge University Press: Cambridge, UK, 2007.

8

Yazyev, O. V.; Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806-809.

9

Mesaros, A.; Papanikolaou, S.; Flipse, C. F. J.; Sadri, D.; Zaanen, J. Electronic states of graphene grain boundaries. Phys. Rev. B 2010, 82, 205119.

10

Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Wee bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

11

Sangwan, V. K.; Jariwala, D.; Kim, I. S.; Chen, K. S.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 2015, 10, 403-406.

12

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

13

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554-561.

14

Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389-392.

15

Gass, M. H.; Bangert, U.; Bleloch, A. L.; Wang, P.; Nair, R. R.; Geim, A. K. Free-standing graphene at atomic resolution. Nat. Nanotechnol. 2008, 3, 676-681.

16

Ahmad, M.; Han, S. A.; Tien, D. H.; Jung, J.; Seo, Y. Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 2011, 110, 054307.

17

Xu, P.; Neek-Amal, M.; Barber, S. D.; Schoelz, J. K.; Ackerman, M. L.; Thibado, P. M.; Sadeghi, A.; Peeters, F. M. Unusual ultra-low-frequency fluctuations in freestanding graphene. Nat. Commun. 2014, 5, 3720.

18

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-759.

19

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

20

Geary, J. M.; Goodby, J. W.; Kmetz, A. R.; Patel, J. S. The mechanism of polymer alignment of liquid-crystal materials. J. Appl. Phys. 1987, 62, 4100-4108.

21

Jerome, B. Surface effects and anchoring in liquid-crystals. Rep. Prog. Phys. 1991, 54, 391-451.

22

Zhang, B. S.; Lee, F. K.; Tsui, O. K. C.; Sheng, P. Liquid crystal orientation transition on microtextured substrates. Phys. Rev. Lett. 2003, 91, 215501.

23

Kim, D. W.; Kim, Y. H.; Jeong, H. S.; Jung, H. T. Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 2012, 7, 29-34.

24

Son, J. H.; Baeck, S. J.; Park, M. H.; Lee, J. B.; Yang, C. W.; Song, J. K.; Zin, W. C.; Ahn, J. H. Detection of graphene domains and defects using liquid crystals. Nat. Commun. 2014, 5, 3484.

25

Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839-843.

26

Ionescu, R.; Ruiz, I.; Favors, Z.; Campbell, B.; Neupane, M. R.; Wickramaratne, D.; Ahmed, K.; Liu, C.; Abrahamian, N.; Lake, R. K. et al. Two step growth phenomena of molybdenum disulfide-tungsten disulfide heterostructures. Chem. Commun. 2015, 51, 11213-11216.

27

Clark, S. J.; Ackland, G. J.; Crain, J. Ab initio molecular polarisabilities of liquid crystals: Application to DOBAMBC and 5CB. Europhys. Lett. 1998, 44, 578-584.

28

Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high- performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983-1990.

29

Najmaei, S.; Amani, M.; Chin, M. L.; Liu, Z.; Birdwell, A. G.; O'Regan, T. P.; Ajayan, P. M.; Dubey, M.; Lou, J. Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 2014, 8, 7930-7937.

30

Khan, M. F.; Iqbal, M. W.; Iqbal, M. Z.; Shehzad, M. A.; Seo, Y.; Eom, J. Photocurrent response of MoS2 field-effect transistor by deep ultraviolet light in atmospheric and N2 gas environments. ACS Appl. Mater. Interfaces 2014, 6, 21645- 21651.

31

Tsen, A. W.; Brown, L.; Levendorf, M. P.; Ghahari, F.; Huang, P. Y.; Havener, R. W.; Ruiz-Vargas, C. S.; Muller, D. A.; Kim, P.; Park, J. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 2012, 336, 1143-1146.

32

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635-5641.

33

Wu, W.; De, D.; Chang, S. C.; Wang, Y. N.; Peng, H. B.; Bao, J. M.; Pei, S. S. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains. Appl. Phys. Lett. 2013, 102, 142106.

34

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

35

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

36

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100-105.

37

Sachs, B.; Britnell, L.; Wehling, T. O.; Eckmann, A.; Jalil, R.; Belle, B. D.; Lichtenstein, A. I.; Katsnelson, M. I.; Novoselov, K. S. Doping mechanisms in graphene-MoS2 hybrids. Appl. Phys. Lett. 2013, 103, 251607.

38

Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402.

39

Hu, P. G.; Zhang, J.; Yoon, M.; Qiao, X. F.; Zhang, X.; Feng, W.; Tan, P. H.; Zheng, W.; Liu, J. J.; Wang, X. N. et al. Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Res. 2014, 7, 694-703.

40

Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905-3911.

41

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

42

Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High- performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219-4227.

43

Chen, C. Y.; Qiao, H.; Lin, S. H.; Man, L. C.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.

Nano Research
Pages 380-391
Cite this article:
Shehzad MA, Hussain S, Khan MF, et al. A progressive route for tailoring electrical transport in MoS2. Nano Research, 2016, 9(2): 380-391. https://doi.org/10.1007/s12274-015-0918-4

706

Views

14

Crossref

N/A

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 24 August 2015
Revised: 28 September 2015
Accepted: 29 September 2015
Published: 24 November 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return