Graphical Abstract

TiO2 nanosheets with highly reactive {001} facets ({001}-TiO2) have attracted great attention in the fields of science and technology because of their unique properties. In recent years, many efforts have been made to synthesize {001}-TiO2 and to explore their applications in photocatalysis. In this review, we summarize the recent progress in preparing {001}-TiO2 using different techniques such as hydrothermal, solvothermal, alcohothermal, chemical vapor deposition (CVD), and sol gel-based techniques. Furthermore, the enhanced efficiency of {001}-TiO2 by modification of carbon materials, surface deposition of transition metals, and non-metal doping is reviewed. Then, the applications of {001}-TiO2-based photocatalysts in the degradation of organic dyes, hydrogen evolution, carbon dioxide (CO2) reduction, bacterial disinfection, and dye-sensitized solar cells are summarized. We believe this entire review on TiO2 nanosheets with {001} facets can further inspire researchers in associated fields.
Markham, A. A Brief History of Pollution; St. Martin's Press: New York, 1994.
Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
Diebold, U. Structure and properties of TiO2 surfaces: A brief review. Appl. Phys. A 2003, 76, 681-687.
Tanemura, S.; Miao, L.; Wunderlich, W.; Tanemura, M.; Mori, Y.; Toh, S.; Kaneko, K. Fabrication and characterization of anatase/rutile-TiO2 thin films by magnetron sputtering: A review. Sci. Technol. Adv. Mater. 2005, 6, 11-17.
Rivera, A. P.; Tanaka, K.; Hisanaga, T. Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Appl. Catal. B-Environ. 1993, 3, 37-44.
Wang, Y. F.; Li, L. P.; Huang, X. S.; Li, Q.; Li, G. S. New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Adv. 2015, 5, 34302-34313.
Fernández-Werner, L.; Faccio, R.; Juan, A.; Pardo, H.; Montenegro, B.; Mombrú, Á. W. Ultrathin (001) and (100) TiO2(B) sheets: Surface reactivity and structural properties. Appl. Surf. Sci. 2014, 290, 180-187.
Kitazawa, S.; Choi, Y.; Yamamoto, S.; Yamaki, T. Rutile and anatase mixed crystal TiO2 thin films prepared by pulsed laser deposition. Thin Solid Films 2006, 515, 1901-1904.
Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53-229.
Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-758.
Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855-874.
Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891-2959.
Liu, Z. Y.; Misra, M. Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 2010, 4, 2196-2200.
Bavykin, D. V.; Walsh, F. C. Elongated titanate nanostructures and their applications. Eur. J. Inorg. Chem. 2009, 2009, 977-997.
Wu, Y. E.; Wang, D. S.; Li, Y. D. Nanocrystals from solutions: Catalysts. Chem. Soc. Rev. 2014, 43, 2112-2124.
Thomas, J. M. Designing catalysts for tomorrow's environmentally benign processes. Top. Catal. 2014, 57, 1115-1123.
Lei, W. Y.; Zhang, T. T.; Gu, L.; Liu, P.; Rodriguez, J. A.; Liu, G.; Liu, M. H. Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis and enhancing the reactivity with nanogold. ACS Catal. 2015, 5, 4385-4393.
Zhang, T. T.; Lei, W. Y.; Liu, P.; Rodriguez, J. A.; Yu, J. G.; Qi, Y.; Liu, G.; Liu, M. H. Insights into the structure- photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires. Chem. Sci. 2015, 6, 4118- 4123.
Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453, 638-642.
Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078-4083.
Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152-3153.
Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 6751-6761.
Lv, K. L.; Cheng, B.; Yu, J. G.; Liu, G. Fluorine ions- mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Phys. Chem. Chem. Phys. 2012, 14, 5349-5362.
Liu, B. T.; Jin, C. H.; Ju, Y.; Peng, L. L.; Tian, L. L.; Wang, J. B.; Zhang, T. J. Crystal growth and design of a facile synthesized uniform single crystalline football-like anatase TiO2 microspheres with exposed {001} facets. Appl. Surf. Sci. 2014, 311, 147-157.
Liu, S. W.; Yu, J. G.; Jaroniec, M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 2011, 23, 4085-4093.
Fang, W. Q.; Gong, X. Q.; Yang, H. G. On the unusual properties of anatase TiO2 exposed by highly reactive facets. J. Phys. Chem. Lett. 2011, 2, 725-734.
Fan, J. J.; Cai, W. Q.; Yu, J. G. Adsorption of N719 dye on anatase TiO2 nanoparticles and nanosheets with exposed (001) facets: Equilibrium, kinetic, and thermodynamic studies. Chem. —Asian J. 2011, 6, 2481-2490.
Xu, H.; Reunchan, P.; Ouyang, S. X.; Tong, H.; Umezawa, N.; Kako, T.; Ye, J. H. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution. Chem. Mater. 2013, 25, 405-411.
Sun, L.; Zhao, Z. L.; Zhou, Y. C.; Liu, L. Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 2012, 4, 613-620.
Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Sci. Rep. 2013, 3, 2849.
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
Akpan, U. G.; Hameed, B. H. The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl. Catal. A-Gen. 2010, 375, 1-11.
Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000-10002.
Nadeem, A. M.; Waterhouse, G. I. N.; Idriss, H. The reactions of ethanol on TiO2 and Au/TiO2 anatase catalysts. Catal. Today 2012, 182, 16-24.
Chin, S.; Park, E.; Kim, M.; Bae, G. N.; Jurng, J. Synthesis and visible light photocatalytic activity of transition metal oxide (V2O5) loading on TiO2 via a chemical vapor condensation method. Mater. Lett. 2012, 75, 57-60.
Rupa, A. V.; Manikandan, D.; Divakar, D.; Sivakumar, T. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. J. Hazard. Mater. 2007, 147, 906-913.
Diak, M.; Grabowska, E.; Zaleska, A. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO2 nanosheets with exposed {001} facets. Appl. Surf. Sci. 2015, 347, 275-285.
Wang, H. Q.; Cao, S.; Fang, Z.; Yu, F. X.; Liu, Y.; Weng, X. L.; Wu, Z. B. CeO2 doped anatase TiO2 with exposed (001) high energy facets and its performance in selective catalytic reduction of NO by NH3. Appl. Surf. Sci. 2015, 330, 245-252.
Papadimitriou, V. C.; Stefanopoulos, V. G.; Romanias, M. N.; Papagiannakopoulos, P.; Sambani, K.; Tudose, V.; Kiriakidis, G. Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin Solid Films 2011, 520, 1195-1201.
Zhu, J. F.; Chen, F.; Zhang, J. L.; Chen, H. J.; Anpo, M. Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A 2006, 180, 196-204.
Sakthivel, S.; Janczarek, M.; Kisch, H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 2004, 108, 19384-19387.
Choi, Y.; Umebayashi, T.; Yoshikawa, M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J. Mater. Sci. 2004, 39, 1837-1839.
Rockafellow, E. M.; Stewart, L. K.; Jenks, W. S. Is sulfur- doped TiO2 an effective visible light photocatalyst for remediation? Appl. Catal. B-Environ. 2009, 91, 554-562.
Selloni, A. Crystal growth: Anatase shows its reactive side. Nat. Mater. 2008, 7, 613-615.
Yang, X. H.; Li, Z.; Liu, G.; Xing, J.; Sun, C. H.; Yang, H. G.; Li, C. Z. Ultra-thin anatase TiO2 nanosheets dominated with {001} facets: Thickness-controlled synthesis, growth mechanism and water-splitting properties. CrystEngComm 2011, 13, 1378-1383.
Yu, J. G.; Fan, J. J.; Lv, K. L. Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2010, 2, 2144-2149.
Xiang, Q. J.; Yu, J. G. Photocatalytic activity of hierarchical flower-like TiO2 superstructures with dominant {001} facets. Chin. J. Catal. 2011, 32, 525-531.
Yang, W. G.; Li, J. M.; Wang, Y. L.; Zhu, F.; Shi, W. M.; Wan, F. R.; Xu, D. S. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chem. Commun. 2011, 47, 1809-1811.
Zhu, J.; Wang, J. G.; Lv, F. J.; Xiao, S. X.; Nuckolls, C.; Li, H. X. Synthesis and self-assembly of photonic materials from nanocrystalline titania sheets. J. Am. Chem. Soc. 2013, 135, 4719-4721.
Liu, S. W.; Yu, J. G.; Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. J. Am. Chem. Soc. 2010, 132, 11914-11916.
Yu, J. X.; Zhang, L.; Huang, B. B.; Liu, H. X. Synthesis of spherical TiO2 made up of high reactive facets of (001). Int. J. Electrochem. Sci. 2013, 8, 5810-5816.
Zhang, D. Q.; Li, G. S.; Wang, H. B.; Chan, K. M.; Yu, J. C. Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets. Cryst. Growth Des. 2010, 10, 1130-1137.
Yu, J. G.; Xiang, Q. J.; Ran, J. R.; Mann, S. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm 2010, 12, 872-879.
Wen, C. Z.; Jiang, H. B.; Qiao, S. Z.; Yang, H. G.; Lu, G. Q. Synthesis of high-reactive facets dominated anatase TiO2. J. Mater. Chem. 2011, 21, 7052-7061.
Zhao, Z.; Sun, Z. C.; Zhao, H. F.; Zheng, M.; Du, P.; Zhao, J. L.; Fan, H. Y. Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. J. Mater. Chem. 2012, 22, 21965-21971.
Lee, W. J.; Sung, Y. M. Synthesis of anatase nanosheets with exposed (001) facets via chemical vapor deposition. Cryst. Growth Des. 2012, 12, 5792-5795.
Roy, N.; Sohn, Y.; Pradhan, D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 2013, 7, 2532-2540.
Amano, F.; Yasumoto, T.; Prieto-Mahaney, O. O.; Uchida, S.; Shibayama, T.; Terada, Y.; Ohtani, B. Highly active titania photocatalyst particles of controlled crystal phase, size, and polyhedral shapes. Top Catal. 2010, 53, 455-461.
Amano, F.; Prieto-Mahaney, O. O.; Terada, Y.; Yasumoto, T.; Shibayama, T.; Ohtani, B. Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity. Chem. Mater. 2009, 21, 2601-2603.
Wu, B. H.; Guo, C. Y.; Zheng, N. F.; Xie, Z. X.; Stucky, G. D. Nonaqueous production of nanostructured anatase with high-energy facets. J. Am. Chem. Soc. 2008, 130, 17563- 17567.
Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124-6130.
Wang, C. H.; Zhang, X. T.; Liu, Y. C. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine- free route and topotactic transformation. Nanoscale 2014, 6, 5329-5337.
Guo, W.; Zhang, F.; Lin, C.; Wang, Z. L. Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv. Mater. 2012, 24, 4761-4764.
Zhang, P.; Shao, C. L.; Zhang, Z. Y.; Zhang, M. Y.; Mu, J. B.; Guo, Z. C.; Liu, Y. C. TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visible photocatalytic properties. Nanoscale 2011, 3, 2943-2949.
Tao, Y.; Wu, C. Y.; Mazyck, D. W. Microwave-assisted preparation of TiO2/activated carbon composite photocatalyst for removal of methanol in humid air streams. Ind. Eng. Chem. Res. 2006, 45, 5110-5116.
Li, W.; Bai, Y.; Li, F. J.; Liu, C.; Chan, K. Y.; Feng, X.; Lu, X. H. Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol. J. Mater. Chem. 2012, 22, 4025-4031.
Eder, D.; Windle, A. H. Carbon-inorganic hybrid materials: The carbon-nanotube/TiO2 interface. Adv. Mater. 2008, 20, 1787-1793.
Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233-2239.
Byrappa, K.; Dayananda, A. S.; Sajan, C. P.; Basavalingu, B.; Shayan, M. B.; Soga, K.; Yoshimura, M. Hydrothermal preparation of ZnO: CNT and TiO2: CNT composites and their photocatalytic applications. J. Mater. Sci. 2008, 43, 2348-2355.
Gui, M. M.; Chai, S. P.; Mohamed, A. R. Modification of MWCNT@TiO2 core-shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane. Appl. Surf. Sci. 2014, 319, 37-43.
Li, B. B.; Zhao, Z. B.; Gao, F.; Wang, X. Z.; Qiu, J. S. Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {001} facets for improved visible light photocatalytic activity. Appl. Catal. B-Environ. 2014, 147, 958-964.
Yu, X. J.; Liu, J. J.; Yu, Y. C.; Zuo, S. L.; Li, B. S. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon 2014, 68, 718-724.
Liao, K. H.; Mittal, A.; Bose, S.; Leighton, C.; Mkhoyan, K. A.; Macosko, C. W. Aqueous only route toward graphene from graphite oxide. ACS Nano 2011, 5, 1253-1258.
Zeller, P.; Dänhardt, S.; Gsell, S.; Schreck, M.; Wintterlin, J. Scalable synthesis of graphene on single crystal Ir(111) films. Surf. Sci. 2012, 606, 1475-1480.
Yan, Z.; Lin, J.; Peng, Z. W.; Sun, Z. Z.; Zhu, Y.; Li, L.; Xiang, C. S.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110-9117.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101-105.
Zhou, K. F.; Zhu, Y. H.; Yang, X. L.; Jiang, X.; Li, C. Z. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New J. Chem. 2011, 35, 353-359.
Du, J.; Lai, X. Y.; Yang, N. L.; Zhai, J.; Kisailus, D.; Su, F. B.; Wang, D.; Jiang, L. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 2011, 5, 590-596.
Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25- graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380-386.
Lee, J. S.; You, K. H.; Park, C. B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 2012, 24, 1084-1088.
Ng, Y. H.; Lightcap, I. V.; Goodwin, K.; Matsumura, M.; Kamat, P. V. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett. 2010, 1, 2222-2227.
Xiang, Q. J.; Cheng, B.; Yu, J. G. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem., Int. Ed. 2015, 54, 11350-11366.
Wang, W. S.; Wang, D. H.; Qu, W. G.; Lu, L. Q.; Xu, A. W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 2012, 116, 19893-19901.
Yang, H. G.; Zeng, H. C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 2004, 108, 3492-3495.
Huang, P. Y.; Kurasch, S.; Srivastava, A.; Skakalova, V.; Kotakoski, J.; Krasheninnikov, A. V.; Hovden, R.; Mao, Q. Y.; Meyer, J. C.; Smet, J. et al. Direct imaging of a two- dimensional silica glass on graphene. Nano Lett. 2012, 12, 1081-1086.
Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.
Gu, L.; Wang, J. Y.; Cheng, H.; Zhao, Y. Z.; Liu, L. F.; Han, X. J. One-step preparation of graphene-supported anatase TiO2 with exposed {001} facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces 2013, 5, 3085-3093.
Liu, L. C.; Liu, Z.; Liu, A. N.; Gu, X. R.; Ge, C. Y.; Gao, F.; Dong, L. Engineering the TiO2-graphene interface to enhance photocatalytic H2 production. ChemSusChem 2014, 7, 618-626.
Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 2011, 3, 3670-3678.
Dai, K.; Lu, L. H.; Liu, Q.; Zhu, G. P.; Liu, Q. Z.; Liu, Z. L. Graphene oxide capturing surface-fluorinated TiO2 nanosheets for advanced photocatalysis and the reveal of synergism reinforce mechanism. Dalton Trans. 2014, 43, 2202-2210.
Kment, S.; Kmentova, H.; Kluson, P.; Krysa, J.; Hubicka, Z.; Cirkva, V.; Gregora, I.; Solcova, O.; Jastrabik, L. Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films. J. Colloid Interface Sci. 2010, 348, 198-205.
Yu, J. G.; Qi, L. F.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C. 2010, 114, 13118- 13125.
Zhu, S. Y.; Liang, S. J.; Gu, Q.; Xie, L. Y.; Wang, J. X.; Ding, Z. X.; Liu, P. Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity. Appl. Catal. B-Environ. 2012, 119-120, 146-155.
Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2010, 10, 30-35.
Long, J. L.; Chang, H. J.; Gu, Q.; Xu, J.; Fan, L. Z.; Wang, S. C.; Zhou, Y. G.; Wei, W.; Huang, L.; Wang, X. X. et al. Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets. Energy Environ. Sci. 2014, 7, 973-977.
Aslam, M.; Fu, L.; Su, M.; Vijayamohanna, K.; Dravid, V. P. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 2004, 14, 1795-1797.
Liu, L. C.; Gu, X. R.; Sun, C. Z.; Li, H.; Deng, Y.; Gao, F.; Dong, L. In situ loading of ultra-small Cu2O particles on TiO2 nanosheets to enhance the visible-light photoactivity. Nanoscale 2012, 4, 6351-6359.
Xiang, Q. J.; Yu, J. G.; Wang, W. G.; Jaroniec, M. Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem. Commun. 2011, 47, 6906-6908.
Liu, L. C.; Ji, Z. Y.; Zou, W. X.; Gu, X. R.; Deng, Y.; Gao, F.; Tang, C. J.; Dong, L. In situ loading transition metal oxide clusters on TiO2 nanosheets as co-catalysts for exceptional high photoactivity. ACS. Catal. 2013, 3, 2052-2061.
Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33-177.
Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. J. Phys. Chem. B 2003, 107, 5483-5486.
Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A-Gen. 2004, 265, 115-121.
Lu, N.; Quan, X.; Li, J. Y.; Chen, S.; Yu, H. T.; Chen, G. H. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J. Phys. Chem. C 2007, 111, 11836-11842.
Zhou, P.; Wu, J. H.; Yu, W. L.; Zhao, G. H.; Fang, G. J.; Cao, S. W. Vectorial doping-promoting charge transfer in anatase TiO2 {001} surface. Appl. Surf. Sci. 2014, 319, 167-172.
Wang, C.; Hu, Q. Q.; Huang, J. Q.; Zhu, C.; Deng, Z. H.; Shi, H. L.; Wu, L.; Liu, Z. G.; Cao, Y. G. Enhanced hydrogen production by water splitting using Cu-doped TiO2 film with preferred (001) orientation. Appl. Surf. Sci. 2014, 292, 161-164.
Wang, W.; Ni, Y. R.; Lu, C. H.; Xu, Z. Z. Hydrogenation temperature related inner structures and visible-light-driven photocatalysis of N-F co-doped TiO2 nanosheets. Appl. Surf. Sci. 2014, 290, 125-130.
Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868-12869.
Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 2011, 13, 4853-4861.
Wang, W.; Lu, C. H.; Su, M. X.; Ni, Y. R.; Xu, Z. Z. Synthesis, characterization, and nitrogen concentration depended visible-light photoactivity of nitrogen-doped TiO2 nanosheets with dominant (001) facets. Chin. J. Catal. 2012, 33, 629-636.
Wang, B.; Leung, M. K. H.; Lu, X. Y.; Chen, S. Y. Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl. Energy 2013, 112, 1190-1197.
Wang, B.; Lu, X. Y.; Xuan, J.; Leung, M. K. H. Facile synthesis and photocatalytic disinfection of boron self-doped TiO2 nanosheets. Mater. Lett. 2014, 115, 57-59.
Yu, J. G.; Dai, G. P.; Xiang, Q. J.; Jaroniec, M. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J. Mater. Chem. 2011, 21, 1049-1057.
Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839-8842.
Brown, D.; Hitz, H. R.; Schäfer, L. The assessment of the possible inhibitory effect of dyestuffs on aerobic waste-water bacteria experience with a screening test. Chemosphere 1981, 10, 245-261.
Wang, J.; Jiang, Y. F.; Zhang, Z. H.; Zhao, G.; Zhang, G.; Ma, T.; Sun, W. Investigation on the sonocatalytic degradation of congo red catalyzed by nanometer rutile TiO2 powder and various influencing factors. Desalination 2007, 216, 196-208.
Muruganandham, M.; Swaminathan, M. Advanced oxidative decolourisation of reactive yellow 14 azo dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe2+ processes-a comparative study. Sep. Purif. Technol. 2006, 48, 297-303.
Boye, B.; Dieng, M. M.; Brillas, E. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods. Environ. Sci. Technol. 2002, 36, 3030- 3035.
Ince, N. H.; Tezcanlí, G. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes Pigments 2001, 49, 145-153.
Augugliaro, V.; Bellardita, M.; Loddo, V.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J. Photochem. Photobio. C 2012, 13, 224-245.
Kisch, H. Semiconductor photocatalysis—Mechanistic and synthetic aspects. Angew. Chem., Int. Ed. 2013, 52, 812-847.
Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C 2012, 13, 169-189.
Fujishima, A.; Zhang, X. T; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515-582.
Yu, X. X.; Yu, J. G.; Cheng, B.; Jaroniec, M. Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties. J. Phys. Chem. C 2009, 113, 17527-17535.
Jiang, P.; Zhou, J. J.; Fang, H. F.; Wang, C. Y.; Wang, Z. L.; Xie, S. S. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Adv. Funct. Mater. 2007, 17, 1303-1310.
Kim, S.; Choi, W. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path. J. Phys. Chem. B 2005, 109, 5143-5149.
Yu, J. G.; Dai, G. P.; Huang, B. B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 2009, 113, 16394-16401.
Monkhorst, H. J.; Pack, J. D. Special points for brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
Xiang, Q. J.; Lv, K. L.; Yu, J. G. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl. Catal. B-Environ. 2010, 96, 557-564.
Liu, S. W.; Yu, J. G.; Wang, W. G. Effects of annealing on the microstructures and photoactivity of fluorinated N-doped TiO2. Phys. Chem. Chem. Phys. 2010, 12, 12308-12315.
Yu, J. G.; Wang, B. Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B-Environ. 2010, 94, 295-302.
Schmidt, C. M.; Buchbinder, A. M.; Weitz, E.; Geiger, F. M. Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry. J. Phys. Chem. A 2007, 111, 13023-13031.
Schmidt, C. M.; Weitz, E.; Geiger, F. M. Interaction of the indoor air pollutant acetone with Degussa P25 TiO2 studied by chemical ionization mass spectrometry. Langmuir 2006, 22, 9642-9650.
Vincent, G.; Marquaire, P. M.; Zahraa, O. Abatement of volatile organic compounds using an annular photocatalytic reactor: Study of gaseous acetone. J. Photochem. Photobiol. A 2008, 197, 177-189.
Lv, K. L.; Xiang, Q. J.; Yu, J. G. Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets. Appl. Catal. B-Environ. 2011, 104, 275-281.
Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. Chem. Commun. 2011, 47, 4532-4534
Sofianou, M. V.; Psycharis, V.; Boukos, N.; Vaimakis, T.; Yu, J. G.; Dillert, R.; Bahnemann, D.; Trapalis, C. Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Appl. Catal. B-Environ. 2013, 142-143, 761-768.
Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water- splitting using TiO2 for hydrogen production. Renew. Sust. Energy Rev. 2007, 11, 401-425.
Xu, Y.; Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779-793.
Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920-4935.
Qi, L. F.; Yu, J. G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS- sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys. Chem. Chem. Phys. 2011, 13, 8915-8923.
Jenkinson, D. S.; Adams, D. E.; Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 1991, 351, 304-306.
Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 2011, 133, 12881-12898.
Lackner, K. S. A guide to CO2 sequestration. Science 2003, 300, 1677-1678.
Szulczewski, M. L.; MacMinn, C. W.; Herzog, H. J.; Juanes, R. Lifetime of carbon capture and storage as a climate- change mitigation technology. Proc. Natl. Acad. Sci. USA 2012, 109, 5185-5189.
Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 2012, 256, 1384-1405.
Yuan, L.; Xu, Y. J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154-167.
Marszewski, M.; Cao, S. W.; Yu, J. G.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261-278.
Li, X.; Wen, J. Q.; Low, J. X.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70-100.
Chen, L.; Graham, M. E.; Li, G. H.; Gentner, D. R.; Dimitrijevic, N. M.; Gray, K. A. Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition. Thin Solid Films 2009, 517, 5641-5645.
Li, G. H.; Ciston, S.; Saponjic, Z. V.; Chen, L.; Dimitrijevic, N. M.; Rajh, T.; Gray, K. A. Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 2008, 253, 105-110.
Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217-9233.
Anop, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B 1997, 101, 2632-2636.
Xu, Q. L.; Yu, J. G.; Zhang, J.; Zhang, J. F.; Liu, G. Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem. Commun. 2015, 51, 7950-7953.
Wang, H. X.; Bell, J.; Desilvestro, J.; Bertoz, M.; Evans, G. Effect of inorganic iodides on performance of dye-sensitized solar cells. J. Phys. Chem. C 2007, 111, 15125-15131.
Wang, H. X.; Liu, M. N.; Yan, C.; Bell, J. Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with[001] facet exposed. Beilstein J. Nanotechnol. 2012, 3, 378-387.
Fan, J. J.; Liu, S. W.; Yu, J. G. Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2 nanosheets/graphene composite films. J. Mater. Chem. 2012, 22, 17027-17036.
Zhang, H. M.; Han, Y. H.; Liu, X. L.; Liu, P. R.; Yu, H.; Zhang, S. Q.; Yao, X. D.; Zhao, H. J. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). Chem. Commun. 2010, 46, 8395-8397.