Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Micro-supercapacitors (MSCs) as important on-chip micropower sources have attracted considerable attention because of their unique and advantageous design for optimized maximum functionality within a minimized sized chip and excellent mechanical flexibility/stability in miniaturized portable electronic device applications. In this work, we report a novel, high-performance flexible integrated on-chip MSC based on hybrid nanostructures of reduced graphene oxide/Fe2O3 hollow nanospheres using a microelectronic photo-lithography technology combined with plasma etching technique. The unique structural design for on-chip MSCs enables high-performance enhancements compared with graphene-only devices, exhibiting high specific capacitances of 11.57 F·cm-3 at a scan rate of 200 mV·s-1 and excellent rate capability and robust cycling stability with capacitance retention of 92.08% after 32, 000 charge/discharge cycles. Moreover, the on-chip MSCs exhibit superior flexibility and outstanding stability even after repetition of charge/discharge cycles under different bending states. As-fabricated highly flexible on-chip MSCs can be easily integrated with CdS nanowire-based photodetectors to form a highly compacted photodetecting system, exhibiting comparable performance to devices driven by conventional external energy storage units.
Yao, S. C.; Tang, X. D.; Hsieh, C. C.; Alyousef, Y.; Vladimer, M.; Fedder, G. K.; Amon, C. H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 2006, 31, 636-649.
Patten, B.; Sánchez, I. A.; Tangney, B. Designing collaborative, constructionist and contextual applications for handheld devices. Comput. Educ. 2006, 46, 294-308.
Zhang, J.; Tan, K. L.; Gong, H. Q. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polym. Test. 2001, 20, 693-701.
Meng, Q. H.; Wu, H. Q.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn micro- supercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100-4106.
Zhu, Y. G.; Wang, Y.; Shi, Y. M.; Wong, J. I.; Yang, H. Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46-54.
Sumboja, A.; Foo, C. Y.; Wang, X.; Lee, P. S. Large areal mass, flexible and free-standing reduced graphene oxide/ manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 2013, 25, 2809-2815.
Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226-252.
Wang, Y.; Shi, Y. M.; Zhao, C. X.; Wong, J. I.; Sun, X. W.; Yang, H. Y. Printed all-solid flexible microsupercapacitors: Towards the general route for high energy storage devices. Nanotechnology 2014, 25, 094010.
Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for micro- supercapacitors. Science 2010, 328, 480-483.
Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. -L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651-654.
Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496-500.
El-Kady, M. F.; Kaner, R. B. Scalable fabrication of high- power graphene micro-supercapacitors for flexible and on- chip energy storage. Nat. Commun. 2013, 4, 1475.
Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene- based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.
Xu, J.; Shen, G. Z. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 2015, 13, 131-139.
Lee, G.; Kim, D.; Yun, J.; Ko, Y. M.; Cho, J.; Ha, J. S. High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655-9664.
Wu, H.; Jiang, K.; Gu, S. S.; Yang, H.; Lou, Z.; Chen, D.; Shen, G. Z. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 2015, 8, 3544-3552.
Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151-2157.
Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111-4122.
Wu, Z. K.; Lin, Z. Y.; Li, L. Y.; Song, B.; Moon, K. S.; Bai, S. L.; Wong, C. P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy 2014, 10, 222-228.
Huang, P. H.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P. -L.; Gogotsi, Y.; Simon, P. On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53-56.
Xiong, G. P.; Meng, C. Z.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 2014, 26, 30-51.
Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin micro- supercapacitors based on graphene. Adv. Mater. 2013, 25, 4035-4042.
Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72-78.
Lv, W.; Sun, F.; Tang, D. M.; Fang, H. T.; Liu, C.; Yang, Q. H.; Cheng, H. M. A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 2011, 21, 9014-9019.
Yan, J.; Wei, T.; Qiao, W. M.; Shao, B.; Zhao, Q. K.; Zhang, L. J.; Fan, Z. J. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 2010, 55, 6973-6978.
Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508-9514.
Chen, S.; Zhu, J. W.; Wang, X. One-step synthesis of graphene- cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C. 2010, 114, 11829-11834.
Mahdi, N.; Golozar, M. A.; Rashed, G. Nano iron oxide (Fe2O3)/carbon black electrodes for electrochemical capacitors. Mater. Lett. 2012, 85, 40-43.
Sassin, M. B.; Mansour, A. N.; Pettigrew, K. A.; Rolison, D. R.; Long, J. W. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage. ACS Nano 2010, 4, 4505- 4514.
Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Wang, L. L.; Lou, Z.; Deng, J.; Zhang, R.; Zhang T. Ethanol gas detection using a yolk-shell (core-shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 2015, 7, 13098-13104.
Zou, Y. Q.; Wang, Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 2011, 3, 2615-2620.
Lu, L. Q.; Wang, Y. Sheet-like and fusiform CuO nanostructures grown on graphene by rapid microwave heating for high Li-ion storage capacities. J. Mater. Chem. 2011, 21, 17916-17921.
Han, J. H.; Lin, Y. C.; Chen, L. Y.; Tsai, Y. C.; Ito, Y.; Guo, X. W.; Hirata, A.; Fujita, T.; Esashi, M.; Gessner, T. et al. On-chip micro-pseudocapacitors for ultrahigh energy and power delivery. Adv. Sci. 2015, 2, 1500067.
Wang, Q. F.; Wang, X. F.; Xu, J.; Ouyang, X.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 2014, 8, 44-51.
Zhang, X. H.; Gong, L.; Liu, K.; Cao, Y. Z.; Xiao, X.; Sun, W. M.; Hu, X. J.; Gao, Y. H.; Chen, J.; Zhou, J. et al. Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv. Mater. 2010, 22, 5292-5296
Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858- 6860.
Xue, M. Q.; Li, F. W.; Zhu, J.; Song, H.; Zhang, M. N.; Cao, T. B. Structure-based enhanced capacitance: In situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns. Adv. Funct. Mater. 2012, 22, 1284-1290.
Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@MnO2/H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267-272.
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326-1330.
Chen, G.; Xie, X. M.; Shen, G. Z. Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. Nano Res. 2014, 7, 1777-1787.