AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional silver film with superhydrophobic and antibacterial properties

Ping Che1Wei Liu1,2Xiaoxue Chang3Anhe Wang4Yongsheng Han2( )
School of Chemistry and Biological EngineeringUniversity of Science & Technology BeijingBeijing100083China
State Key Laboratory of Multiphase Complex SystemsInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
State Key Laboratory of Theoretical PhysicsInstitute of Theoretical PhysicsChinese Academy of SciencesBeijing100190China
Key Laboratory of Colloid and Interface SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
Show Author Information

Graphical Abstract

Abstract

Material properties are strongly dependent on material structure. The large diversity and complexity of material structures provide significant opportunities to improve the properties of the materials, expanding their applications. Here, we discuss the fabrication of a multifunctional silver film prepared by controlling the nucleation and growth of silver particles. Silver films with high hydrophobicity and antibacterial activity were fabricated by adopting an electrochemical approach. The dependence of the hydrophobic and antibacterial properties on the size and shape of the silver particles was first investigated. Small-sized silver particles exhibited a high antibacterial rate, while a porous silver film composed of dendritic particles showed a significant hydrophobic activity. By regulating the reaction time, current density, and silver salt concentration, a silver film with a contact angle of 150.9° and an antibacterial rate of 54.7% was synthesized. This study demonstrates that finding a compromise between different material structures is a suitable way to fabricate multifunctional devices.

References

1

Chitwood, D. H.; Naylor, D. T.; Thammapichai, P.; Weeger, A. C. S.; Headland, L. R.; Sinha, N. R. Conflict between intrinsic leaf asymmetry and phyllotaxis in the resupinate leaves of alstroemeria psittacina. Front. Plant Sci. 2012, 3, 182.

2

Beerling, D. J.; Osborne, C. P.; Chaloner, W. G. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic Era. Nature 2001, 410, 352-354.

3

Jiang, Z. X.; Geng, L.; Huang, Y. D.; Guan, S. A.; Dong, W.; Ma, Z. Y. The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf. J. Colloid Interface Sci. 2011, 354, 866-872.

4

Burton, Z.; Bhushan, B. Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces. Ultramicroscopy 2006, 106, 709-719.

5

Tang, S. H.; Chen, M.; Zheng, N. F. Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer. Nano Res. 2015, 8, 165-174.

6

Park, S. H.; Cho, E. H.; Sohn, J.; Theilmann, P.; Chu, K. M.; Lee, S.; Sohn, Y.; Kim, D.; Kim, B. Design of multi- functional dual hole patterned carbon nanotube composites with superhydrophobicity and durability. Nano Res. 2013, 6, 389-398.

7

Knight, R. J. B. The introduction of copper sheathing into the Royal Navy, 1779-1786. The Mariner's Mirror 1973, 59, 299-309.

8

Harris, J. R. Copper and shipping in the eighteenth century. Economic History Rev. 1966, 19, 550-568.

9

Teklu, B. M.; Adriaanse, P. I.; Ter Horst, M. M. S.; Deneer, J. W.; Van den Brink, P. J. Surface water risk assessment of pesticides in Ethiopia. Sci. Total Environ. 2015, 508, 566-574.

10

Parrón, T.; Requena, M.; Hernández, A. F.; Alarcón, R. Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol. Let. 2014, 230, 157-165.

11

Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. Nano Res. 2013, 6, 822-835.

12

Fasciani, C.; Silvero, M. J.; Anghel, M. A.; Arguello, G. A.; Becerra, M. C.; Scaiano, J. C. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability. J. Am. Chem. Soc. 2014, 136, 17394-17397.

13

Yuan, X.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014, 7, 301-307.

14

Choi, O.; Deng, K. K.; Kim, N. J.; Ross, L. Jr.; Surampalli, R. Y.; Hu, Z. Q. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42, 3066-3074.

15

Choi, O.; Hu, Z. Q. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008, 42, 4583-4588.

16

Reyes-Vidal, Y.; Suarez-Rojas, R.; Ruiz, C.; Torres, J.; Ţălu, Ş.; Méndez, A.; Trejo, G. Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings. Appl. Surf. Sci. 2015, 342, 34-41.

17

Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346-2353.

18

AshaRani, P. V.; Low Kah Mun, G.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279-290.

19

Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177-182.

20

Batchelor-McAuley, C.; Tschulik, K.; Neumann, C. C. M.; Laborda, E.; Compton, R. G. Why are silver nanoparticles more toxic than bulk silver? Towards understanding the dissolution and toxicity of silver nanoparticles. Int. J. Electrochem. Sci. 2014, 9, 1132-1138.

21

Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244-255.

22

Sivera, M.; Kvitek, L.; Soukupova, J.; Panacek, A.; Prucek, R.; Vecerova, R.; Zboril, R. Silver nanoparticles modified by gelatin with extraordinary pH stability and long-term antibacterial activity. PLoS One 2014, 9, e103675.

23

Bing, W.; Chen, Z. W.; Sun, H. J.; Shi, P.; Gao, N.; Ren, J. S.; Qu, X. G. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 2015, 8, 1648-1658.

24

Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. S. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ. Sci. Technol. 2011, 45, 4422-4428.

25

Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18, 225103.

26

Sadeghi, B.; Garmaroudi, F. S.; Hashemi, M.; Nezhad, H. R.; Nasrollahi, A.; Ardalan, S.; Ardalan, S. Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates. Adv. Powder Technol. 2012, 23, 22-26.

27

Bansal, V.; Li, V.; O'Mullane, A. P.; Bhargava, S. K. Shape dependent electrocatalytic behaviour of silver nanoparticles. CrystEngComm 2010, 12, 4280-4286.

28

Wang, H.; Yang, J. T.; Li, X. L.; Zhang, H. Z.; Li, J. H; Guo, L. Facet-dependent photocatalytic properties of AgBr nanocrystals. Small 2012, 8, 2802-2806.

29

Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712-1720.

30

Fan, W. H.; Wang, X. L.; Cui, M. M; Zhang, D. F.; Zhang, Y.; Yu, T.; Guo, L. Differential oxidative stress of octahedral and cubic Cu2O micro/nanocrystals to Daphnia magna. Environ. Sci. Technol. 2012, 46, 10255-10262.

31

Xu, X. H.; Zhang, Z. Z.; Yang, J. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method. Langmuir 2010, 26, 3654-3658.

32

Su, B.; Wang, S. T.; Song, Y. L.; Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2011, 4, 266-273.

33

Kang, S. M.; You, I.; Cho, W. K.; Shon, H. K.; Lee, T. G.; Choi, I. S.; Karp, J. M.; Lee, H. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew. Chem., Int. Ed. 2010, 49, 9401-9404.

34

Lu, Y.; Sathasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132-1135.

35

Song, Y.; Nair, R. P.; Zou, M.; Wang, Y. Q. Superhydrophobic surfaces produced by applying a self-assembled monolayer to silicon micro/nano-textured surfaces. Nano Res. 2009, 2, 143-150.

36

Wu, L. K.; Hu, J. M.; Zhang, J. Q.; Cao, C. N. Superhydrophobic surface constructed on electrodeposited sol-gel silica film. Electrochem. Commun. 2013, 26, 85-88.

37

Mendoza-Reséndez, R.; Gómez-Treviño, A.; Barriga-Castro, E. D.; Núñez, N. O.; Luna, C. Synthesis of antibacterial silver-based nanodisks and dendritic structures mediated by royal jelly. RSC Adv. 2014, 4, 1650-1658.

38

Zhu, J.; Kim, K. S.; Liu, Z. X.; Feng, H.; Hou, S. F. Electroless deposition of silver nanoparticles on graphene oxide surface and its applications for the detection of hydrogen peroxide. Electroanalysis 2014, 26, 2513-2519.

39

Sekerka, R. F. A stability function for explicit evaluation of the Mullins-Sekerka interface stability criterion. J. Appl. Phys. 1956, 36, 264-268.

40

Zhao, Q.; Li, J.; Tang, S. Y.; Zhang, Y. Z.; Chen, L.; Choi, M. M. F.; Guo, Y.; Xiao, D. Magnetic-field-induced growth of silver dendrite-crystalline Liesegang rings. CrystEngComm 2014, 16, 6542-6546.

41

Fang, J. X.; You, H. J.; Zhu, C.; Kong, P.; Shi, M.; Song, X. P.; Ding, B. J. Thermodynamic and kinetic competition in silver dendrite growth. Chem. Phys. Lett. 2007, 439, 204-208.

42

Cassie, A. B. D. Contact angles. Discuss. Faraday Soc. 1948, 3, 11-16.

43

Gu, C. D.; Zhang, T. Y. Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces. Langmuir 2008, 24, 12010-12016.

44

Ostwald, W. Z. Blocking of Ostwald ripening allowing long-term stabilization. Phys. Chem. 1901, 37, 385.

45

Liu, W.; Yang, T.; Li, C. X.; Che, P.; Han, Y. S. Regulating silver morphology via electrochemical reaction. CrystEngComm 2015, 17, 6014-6022.

46

Yang, T.; Han, Y. S.; Li, J. H. Manipulating silver dendritic structures via diffusion and reaction. Chem. Eng. Sci. 2015, 138, 457-464.

47

Xue, Y. P.; Taleb, A.; Jegou, P. Electrodeposition of cobalt films with an oriented fir tree-like morphology with adjustable wetting properties using a self-assembled gold nanoparticle modified HOPG electrode. J. Mater. Chem. 2013, 1, 11580-11588.

Nano Research
Pages 442-450
Cite this article:
Che P, Liu W, Chang X, et al. Multifunctional silver film with superhydrophobic and antibacterial properties. Nano Research, 2016, 9(2): 442-450. https://doi.org/10.1007/s12274-015-0925-5

705

Views

27

Crossref

N/A

Web of Science

28

Scopus

6

CSCD

Altmetrics

Received: 24 July 2015
Revised: 18 September 2015
Accepted: 15 October 2015
Published: 25 November 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return