AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Two-color spectroscopy of UV excited ssDNA complex with a single-wall nanotube photoluminescence probe: Fast relaxation by nucleobase autoionization mechanism

Tetyana Ignatova1Alexander Balaeff2Michael Blades1Ming Zheng3Peter Stoeckl4Slava V. Rotkin5( )
Physics DepartmentLehigh University16 Memorial Dr. E.BethlehemPA18015USA
NanoScience Technology CenterUniversity of Central Florida12424 Research ParkwaySuite 400OrlandoFL32826USA
National Institute of Standards and Technology100 Bureau DriveGaithersburgMD20899USA
Department of Physics & AstronomyUniversity of Rochester206 Bausch & Lomb HallRochesterNY14627USA
Physics DepartmentCenter for Advanced Materials & Nanotechnology and Center for Photonics & NanoelectronicsLehigh University16 Memorial Dr. E.BethlehemPA18015USA
Show Author Information

Graphical Abstract

Abstract

DNA autoionization is a fundamental process wherein ultraviolet (UV)-photoexcited nucleobases dissipate energy by charge transfer to the environment without undergoing chemical damage. Here, single-wall carbon nanotubes (SWNT) are explored as a photoluminescent reporter for the study of the mechanism and rates of DNA autoionization. Two-color photoluminescence spectroscopy allows separate photoexcitation of the DNA and the SWNTs in the UV and visible range, respectively. A strong SWNT photoluminescence quenching is observed when the UV pump is resonant with the DNA absorption, consistent with charge transfer from the excited states of the DNA to the SWNT. Semiempirical calculations of the DNA-SWNT electronic structure, combined with a Green's function theory for charge transfer, show a 20 fs autoionization rate, dominated by hole transfer. Rate-equation analysis of the spectroscopy data confirms that the quenching rate is limited by thermalization of the free charge carriers transferred to the nanotube reservoir. This approach has great potential for monitoring DNA excitation, autoionization, and chemical damage, both in vivo and in vitro.

Electronic Supplementary Material

Download File(s)
nr-9-2-571_ESM.pdf (1.8 MB)

References

1

Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernández, C. E.; Kohler, B. DNA excited-state dynamics: From single bases to the double helix. Annu. Rev. Phys. Chem. 2009, 60, 217-239.

2

Adhikary, A.; Malkhasian, A. Y. S.; Collins, S.; Koppen, J.; Becker, D.; Sevilla, M. D. UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures. Nucleic Acids Res. 2005, 33, 5553-5564.

3

Crespo-Hernández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 2004, 104, 1977-2020.

4

Zhang, Y. Y.; Dood, J.; Beckstead, A. A.; Li, X. -B.; Nguyen, K. V.; Burrows, C. J.; Improta, R.; Kohler, B. Photoinduced electron transfer in DNA: Charge shift dynamics between 8-oxo-guanine anion and adenine. J. Phys. Chem. B 2015, 119, 7491-7502.

5

Schwalb, N. K.; Temps, F. Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine. J. Am. Chem. Soc. 2007, 129, 9272-9273.

6

Crespo-Hernández, C. E.; Arce, R. Photoionization of DNA and RNA bases, nucleosides and nucleotides through a combination of one- and two-photon pathways upon 266 nm nanosecond laser excitation. Photochem. Photobiol. 2002, 76, 259-267.

7

Belau, L.; Wilson, K. R.; Leone, S. R.; Ahmed, M. Vacuum-ultraviolet photoionization studies of the microhydration of DNA bases (guanine, cytosine, adenine, and thymine). J. Phys. Chem. A 2007, 111, 7562-7568.

8

Gu, J. D.; Leszczynski, J.; Schaefer, H. F. Interactions of electrons with bare and hydrated biomolecules: From nucleic acid bases to DNA segments. Chem. Rev. 2012, 112, 5603-5640.

9

Pecourt, J. -M. L.; Peon, J.; Kohler, B. Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. J. Am. Chem. Soc. 2000, 122, 9348-9349.

10

Wang, C. -R.; Luo, T.; Lu, Q. -B. On the lifetimes and physical nature of incompletely relaxed electrons in liquid water. Phys. Chem. Chem. Phys. 2008, 10, 4463-4470.

11

Smyth, M.; Kohano, J. Excess electron localization in solvated DNA bases. Phys. Rev. Lett. 2011, 106, 238108.

12

Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816-10906.

13

Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85-120.

14

Heister, E.; Brunner, E. W.; Dieckmann, G. R.; Jurewicz, I.; Dalton, A. B. Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces 2013, 5, 1870-1891.

15

Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. J. Carbon materials for drug delivery & cancer therapy. Materials Today 2011, 14, 316-323.

16

Kang, J. W.; Nguyen, F. T.; Lue, N.; Dasari, R. R.; Heller, D. A. Measuring uptake dynamics of multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells. Nano Lett. 2012, 12, 6170-6174.

17

Chilek, J. L.; Wang, R. H.; Draper, R. K.; Pantano, P. Use of gel electrophoresis and Raman spectroscopy to characterize the effect of the electronic structure of single-walled carbon nanotubes on cellular uptake. Anal. Chem. 2014, 86, 2882-2887.

18

Jain, A.; Homayoun, A.; Bannister, C. W.; Yum, K. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine. Biotechnol. J. 2015, 10, 447-459.

19

Choi, Y.; Moody, I. S.; Sims, P. C.; Hunt, S. R.; Corso, B. L.; Perez, I.; Weiss, G. A.; Collins, P. G. Single-molecule lysozyme dynamics monitored by an electronic circuit. Science 2012, 335, 319-324.

20

Martin, C. R.; Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2003, 2, 29-37.

21

Zhou, W. W.; Wang, Y. Y.; Lim, T. -S.; Pham, T.; Jain, D.; Burke, P. J. Detection of single ion channel activity with carbon nanotubes. Sci. Rep. 2015, 5, 9208.

22

Budhathoki-Uprety, J.; Jena, P. V.; Roxbury, D.; Heller, D. A. Helical polycarbodiimide cloaking of carbon nanotubes enables inter-nanotube exciton energy transfer modulation. J. Am. Chem. Soc. 2014, 136, 15545-15550.

23

Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338-342.

24

Strano, M. S.; Zheng, M.; Jagota, A.; Onoa, G. B.; Heller, D. A.; Barone, P. W.; Usrey, M. L. Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett. 2004, 4, 543-550.

25

Lu, G.; Maragakis, P.; Kaxiras, E. Carbon nanotube interaction with DNA. Nano Lett. 2005, 5, 897-900.

26

Heller, D. A.; Jeng, E. S.; Yeung, T. -K.; Martinez, B. M.; Moll, A. E.; Gastala, J. B.; Strano, M. S. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 2006, 311, 508-511.

27

Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250-253.

28

Khripin, C. Y.; Manohar, S.; Zheng, M.; Jagota, A. Measurement of electrostatic properties of DNA-carbon nanotube hybrids by capillary electrophoresis. J. Phys. Chem. C 2009, 113, 13616-13621.

29

Rotkin, S. V. Electronic properties of nonideal nanotube materials: Helical symmetry breaking in DNA hybrids. Annu. Rev. Phys. Chem. 2010, 61, 241-264.

30

Roxbury, D.; Mittal, J.; Jagota, A. Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett. 2012, 12, 1464-1469.

31

Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638-15639.

32

Mu, B.; Zhang, J. Q.; McNicholas, T. P.; Reuel, N. F.; Kruss, S.; Strano, M. S. Recent advances in molecular recognition based on nanoengineered platforms. Acc. Chem. Res. 2014, 47, 979-988.

33

Fabbro, A.; Bosi, S.; Ballerini, L.; Prato, M. Carbon nanotubes: Artificial nanomaterials to engineer single neurons and neuronal networks. ACS Chem. Neurosci. 2012, 3, 611-618.

34

Calvaresi, M.; Zerbetto, F. The devil and holy water: Protein and carbon nanotube hybrids. Acc. Chem. Res. 2013, 46, 2454-2463.

35

Mundra, R. V.; Wu, X.; Sauer, J.; Dordick, J. S.; Kane, R. S. Nanotubes in biological applications. Curr. Opin. Biotechnol. 2014, 28, 25-32.

36

Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545-1548.

37

Lustig, S. R.; Jagota, A.; Khripin, C.; Zheng, M. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J. Phys. Chem. B 2005, 109, 2559-2566.

38

Snyder, S. E.; Rotkin, S. V. Polarization component of cohesion energy in single-wall carbon nanotube-DNA complexes. JETP Lett. 2006, 84, 348-351.

39

Alidori, S.; Asqiriba, K.; Londero, P.; Bergkvist, M.; Leona, M.; Scheinberg, D. A.; McDevitt, M. R. Deploying RNA and DNA with functionalized carbon nanotubes. J. Phys. Chem. C 2013, 117, 5982-5992.

40

Roxbury, D.; Jagota, A.; Mittal, J. Structural characteristics of oligomeric DNA strands adsorbed onto single-walled carbon nanotubes. J. Phys. Chem. B 2013, 117, 132-140.

41

Landry, M. P.; Vukovic, L.; Kruss, S.; Bisker, G.; Landry, A. M.; Islam, S.; Jain, R.; Schulten, K.; Strano, M. S. Comparative dynamics and sequence dependence of DNA and RNA binding to single walled carbon nanotubes. J. Phys. Chem. C 2015, 119, 10048-10058.

42

Puller, V. I.; Rotkin, S. V. Helicity and broken symmetry of DNA-nanotube hybrids. EPL 2007, 77, 27006.

43

Wall, A.; Ferreira, M. S. Electronic density of states of helically-wrapped carbon nanotubes. J. Phys. : Condens. Matter 2007, 19, 406227.

44

Snyder, S. E.; Rotkin, S. V. Optical identification of a DNA-wrapped carbon nanotube: Signs of helically broken symmetry. Small 2008, 4, 1284-1286.

45

Hughes, M. E.; Brandin, E.; Golovchenko, J. A. Optical absorption of DNA-carbon nanotube structures. Nano Lett. 2007, 7, 1191-1194.

46

Cathcart, H.; Nicolosi, V.; Hughes, J. M.; Blau, W. J.; Kelly, J. M.; Quinn, S. J.; Coleman, J. N. Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions. J. Am. Chem. Soc. 2008, 130, 12734-12744.

47

Duque, J. G.; Pasquali, M.; Cognet, L.; Lounis, B. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes. ACS Nano 2009, 3, 2153-2156.

48

Fagan, J. A.; Zheng, M.; Rastogi, V.; Simpson, J. R.; Khripin, C. Y.; Silvera Batista, C. A.; Hight Walker, A. R. Analyzing surfactant structures on length and chirality resolved (6, 5) single-wall carbon nanotubes by analytical ultracentrifugation. ACS Nano 2013, 7, 3373-3387.

49

Petersen, E. J.; Tu, X. M.; Dizdaroglu, M.; Zheng, M.; Nelson, B. C. Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage. Small 2013, 9, 205-208.

50

Zhang, Y. Q.; Liu, C. R.; Balae, A.; Skourtis, S. S.; Beratan, D. N. Biological charge transfer via flickering resonance. Proc. Natl. Acad. Sci. USA 2014, 111, 10049-10054.

51

Giese, B.; Amaudrut, J.; Köhler, A. K.; Spormann, M.; Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunneling. Nature 2001, 412, 318-320.

52

Barnett, R. N.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. Charge migration in DNA: Ion-gated transport. Science 2001, 294, 567-571.

53

Senthilkumar, K.; Grozema, F. C.; Guerra, C. F.; Bickelhaupt, F. M.; Lewis, F. D.; Berlin, Y. A.; Ratner, M. A.; Siebbeles, L. D. A. Absolute rates of hole transfer in DNA. J. Am. Chem. Soc. 2005, 127, 14894-14903.

54

Lewis, F. D.; Wu, T. F.; Zhang, Y. F.; Letsinger, R. L.; Greenfield, S. R.; Wasielewski, M. R. Distance-dependent electron transfer in DNA hairpins. Science 1997, 277, 673-676.

55

Genereux, J. C.; Barton, J. K. Mechanisms for DNA charge transport. Chem. Rev. 2010, 110, 1642-1662.

56

Lewis, F. D.; Zhu, H. H.; Daublain, P.; Fiebig, T.; Raytchev, M.; Wang, Q.; Shafirovich, V. Crossover from superexchange to hopping as the mechanism for photoinduced charge transfer in DNA hairpin conjugates. J. Am. Chem. Soc. 2006, 128, 791-800.

57

Renaud, N.; Berlin, Y. A.; Lewis, F. D.; Ratner, M. A. Between superexchange and hopping: An intermediate charge-transfer mechanism in poly(A)-poly(T) DNA hairpins. J. Am. Chem. Soc. 2013, 135, 3953-3963.

58

Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon nanotubes: Synthesis, structure, properties, and applications, Vol. 80. In Topics in Applied Physics; Springer: Berlin, Heidelberg, 2001.

59

Ajiki, H.; Ando, T. Electronic states of carbon nanotubes. J. Phys. Soc. Jpn. 1993, 62, 1255-1266.

60

Ignatova, T.; Najafov, H.; Ryasnyanskiy, A.; Biaggio, I.; Zheng, M.; Rotkin, S. V. Significant FRET between SWNT/DNA and rare earth ions: A signature of their spatial correlations. ACS Nano 2011, 5, 6052-6059.

61

Jin, H.; Heller, D. A.; Strano, M. S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 2008, 8, 1577-1585.

62

Hertel, T.; Himmelein, S.; Ackermann, T.; Stich, D.; Crochet, J. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: Single-wall carbon nanotubes. ACS Nano 2010, 4, 7161-7168.

63

Ridley, J.; Zerner, M. An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theoret. Chim. Acta 1973, 32, 111-134.

64

Voityuk, A. A. Intermediate neglect of differential overlap for spectroscopy. WIREs Comput. Mol. Sci. 2013, 3, 515-527.

65
Tejerina, B.; Reimers, J. CNDO/INDO. 2014, DOI 10.4231/D3R49G96G. nanoHUB. org. https://nanohub.org/resources/3352 (accessed Sep 3, 2015).
66

Venkatramani, R.; Keinan, S.; Balaeff, A.; Beratan, D. N. Nucleic acid charge transfer: Black, white and gray. Coord. Chem. Rev. 2011, 255, 635-648.

67

Venkatramani, R.; Davis, K. L.; Wierzbinski, E.; Bezer, S.; Balaeff, A.; Keinan, S.; Paul, A.; Kocsis, L.; Beratan, D. N.; Achim, C. et al. Evidence for a near-resonant charge transfer mechanism for double-stranded peptide nucleic acid. J. Am. Chem. Soc. 2011, 133, 62-77.

68

Hatcher, E.; Balaeff, A.; Keinan, S.; Venkatramani, R.; Beratan, D. N. PNA versus DNA: Effects of structural fluctuations on electronic structure and hole-transport mechanisms. J. Am. Chem. Soc. 2008, 130, 11752-11761.

69

Fonseca, A.; Perpète, E. A.; Galet, P.; Champagne, B.; Nagy, J. B.; André, J. M.; Lambin, P.; Lucas, A. A. Quantum chemical evaluation of the knee angle in the (5, 5)-(9, 0) coiled carbon tubule. J. Phys. B: At. Mol. Opt. Phys. 1996, 29, 4915-4924.

70

Voityuk, A. A. Fluctuation of the electronic coupling in DNA: Multistate versus two-state model. Chem. Phys. Lett. 2007, 439, 162-165.

71

Voityuk, A. A. Electronic couplings and on-site energies for hole transfer in DNA: Systematic quantum mechanical/molecular dynamic study. J. Chem. Phys. 2008, 128, 115101.

72

Thiel, W. Semiempirical quantum-chemical methods. WIREs Comput. Mol. Sci. 2014, 4, 145-147.

73

Voityuk, A. A. Assessment of semiempirical methods for the computation of charge transfer in DNA π-stacks. Chem. Phys. Lett. 2006, 427, 177-180.

74

Kilina, S.; Tretiak, S. Excitonic and vibrational properties of single-walled semiconducting carbon nanotubes. Adv. Funct. Mater. 2007, 17, 3405-3420.

75

Chen, H. N.; Ratner, M. A.; Schatz, G. C. Time-dependent theory of the rate of photo-induced electron transfer. J. Phys. Chem. C 2011, 115, 18810-18821.

76

Santoro, F.; Improta, R.; Avila, F.; Segado, M.; Lami, A. The interplay between neutral exciton and charge transfer states in single-strand polyadenine: A quantum dynamical investigation. Photochem. Photobiol. Sci. 2013, 12, 1527-1543.

77

Tataurov, A. V.; You, Y.; Owczarzy, R. Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys. Chem. 2008, 133, 66-70.

Nano Research
Pages 571-583
Cite this article:
Ignatova T, Balaeff A, Blades M, et al. Two-color spectroscopy of UV excited ssDNA complex with a single-wall nanotube photoluminescence probe: Fast relaxation by nucleobase autoionization mechanism. Nano Research, 2016, 9(2): 571-583. https://doi.org/10.1007/s12274-015-0938-0

712

Views

4

Crossref

N/A

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 03 September 2015
Accepted: 04 November 2015
Published: 13 January 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return