Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The synthesis of a composite of cobalt phosphide nanowires and reduced graphene oxide (denoted CoP/RGO) via a facile hydrothermal method combined with a subsequent annealing step is reported. The resulting composite presents large specific surface area and enhanced conductivity, which can effectively facilitate charge transport and accommodates variations in volume during the lithiation/de-lithiation processes. As a result, the CoP/RGO nanocomposite manifests a high reversible specific capacity of 960 mA·h·g–1 over 200 cycles at a current density of 0.2 A·g–1 (297 mA·h·g–1 over 10, 000 cycles at a current density of 20 A·g–1) and excellent rate capability (424 mA·h·g–1 at a current density of 10 A·g–1).
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
Wang, H. J.; Dai, H. J. Strongly coupled inorganic–nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.
Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.
Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.
Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.
Liu, J.; Xia, H.; Xue, D. F.; Lu, L. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J. Am. Chem. Soc. 2009, 131, 12086–12087.
Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.
Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, 170–192.
Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.
Jiang, P.; Liu, Q.; Sun, X. P. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440–13445.
Callejas, J. F.; McEnaney, J. M.; Read, C. G.; Crompton, J. C.; Biacchi, A. J.; Popczun, E. J.; Gordon, T. R.; Lewis, N. S.; Schaak R. E. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 2014, 8, 11101–11107.
Tian, J. Q.; Liu, Q.; Liang, Y. H.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. FeP nanoparticles film grown on carbon cloth: An ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl. Mater. Interfaces 2014, 6, 20579–20584.
Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Xing, W.; Sun, X. P. Cobalt phosphide nanowires: Efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem., Int. Ed. 2015, 54, 5493–5497.
Yang, D.; Zhu, J. X.; Rui, X. H.; Tan, H. T.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. Y. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 1093–1099.
Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated highperformance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.
Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26, 5702–5707.
Zhang, Z. S.; Yang, J.; Nuli, Y.; Wang, B. F.; Xu, J. Q. CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ionics 2005, 176, 693–697.
Yang, Z. H.; Liu, L.; Wang, X. Y.; Yang, S. Y.; Su, X. P. Stability and electronic structure of the Co–P compounds from first-principle calculations. J. Alloys Compd. 2011, 509, 165–171.
Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130.
Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. -K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.
Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene and their integrated electrodes. Nano Today 2014, 9, 785–807.
Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
Geng, J. X.; Jung, H. T. Porphyrin functionalized graphene sheets in aqueous suspensions: From the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C 2010, 114, 8227–8234.
Wang, B.; Zhu, T.; Wu, H. B.; Xu, R.; Chen, J. S.; Lou, X. W. Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)· 0.11H2O nanowires with improved supercapacitive properties. Nanoscale 2012, 4, 2145–2149.
Gong, Y. J.; Yang, S. B.; Zhan, L.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater. 2014, 24, 125–130.
Shi, Y.; Wang, J. Z.; Chou, S. L.; Wexler, D.; Li, H. J.; Ozawa, K.; Liu, H. K.; Wu, Y. P. Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett. 2013, 13, 4715–4720.
Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energystorage devices. Adv. Mater. 2009, 21, 2710–2714.
Li, Y. Z.; Zhou, Z.; Gao, X. P.; Yan, J. A novel sol-gel method to synthesize nanocrystalline LiVPO4F and its electrochemical Li intercalation performances. J. Power Sources 2006, 160, 633–637.
Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.
Zhou, G. M.; Wang, D. W.; Yin, L. C.; Li, N.; Li, F.; Cheng, H. M. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214–3223.
Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.
López, M. C.; Ortiz, G. F.; Tirado, J. L. A functionalized Co2P negative electrode for batteries demanding high Lipotential reaction. J. Electrochem. Soc. 2012, 159, A1253–A1261.
Lu, Y.; Tu, J. P.; Xiang, J. Y.; Wang, X. L.; Zhang, J.; Mai, Y. J.; Mao, S. X. Improved electrochemical performance of self-assembled hierarchical nanostructured nickel phosphide as a negative electrode for lithium ion batteries. J. Phys. Chem. C 2011, 115, 23760–23767.
Lu, Y.; Tu, J. P.; Xiong, Q. Q.; Qiao, Y. Q.; Wang, X. L.; Gu, C. D.; Mao, S. X. Synthesis of dinickel phosphide (Ni2P) for fast lithium-ion transportation: A new class of nanowires with exceptionally improved electrochemical performance as a negative electrode. RSC Adv. 2012, 2, 3430–3436.
Carenco, S.; Surcin, C.; Morcrette, M.; Larcher, D.; Mézailles, N.; Boissière, C.; Sanchez, C. Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating. Chem. Mater. 2012, 24, 688–697.
Boyanov, S.; Zitoun, D.; Ménétrier, M.; Jumas, J. C.; Womes, M.; Monconduit, L. Comparison of the electrochemical lithiation/delitiation mechanisms of FePx (x = 1, 2, 4) based electrodes in Li-ion batteries. J. Phys. Chem. C 2009, 113, 21441–21452.
Zhou, J.; Tian, G. H.; Chen, Y. J.; Meng, X. Y.; Shi, Y. H.; Cao, X. R.; Pan, K.; Fu, H. G. In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance. Chem. Commun. 2013, 49, 2237–2239.
Liu, J. H.; Liu, X. W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097–4111.
Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.
Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Graphene: A two-dimensional platform for lithium storage. Small 2013, 9, 1173–1187.
Liu, R.; Duay, J.; Lee, S. B. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun. 2011, 47, 1384–1404.
Wu, C. Z.; Yin, P.; Zhu, X.; Ouyang, C. Z.; Xie, Y. Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 2006, 110, 17806–17812.
Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444.
Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.
Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 2012, 22, 8916–8921.
Wang, L.; Dong, Z. H.; Wang, Z. G.; Zhang, F. X.; Jin, J. Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: Understanding the effect of interlayer space on electrochemical activity. Adv. Funct. Mater. 2013, 23, 2758–2764.