AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Organic–inorganic bismuth (Ⅲ)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites

Miaoqiang Lyu1Jung-Ho Yun1Molang Cai2Yalong Jiao2Paul V. Bernhardt3Meng Zhang1Qiong Wang1Aijun Du2Hongxia Wang2Gang Liu4Lianzhou Wang1( )
Nanomaterials CentreSchool of Chemical Engineering and AIBNThe University of QueenslandSt LuciaBrisbaneQLD4072Australia
School of ChemistryPhysics and Mechanical EngineeringScience and Engineering FacultyQueensland University of TechnologyBrisbaneQLD4001Australia
School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbane4072Australia
Advanced Carbon DivisionInstitute of Metal Research Chinese Academy of Sciences (IMR CAS)72 Wenhua RoadShenyang110016China
Show Author Information

Graphical Abstract

Abstract

Methylammonium bismuth (Ⅲ) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (Ⅱ) and Sn (Ⅱ)) for solar energy applications.

Electronic Supplementary Material

Download File(s)
nr-9-3-692_ESM.cif (14.7 KB)
nr-9-3-692_ESM.pdf (2.5 MB)

References

1

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.

2

Burschka, J.; Pellet, N.; Moon, S. -J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

3

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. -B.; Duan, H. -S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

4

Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A holeconductor- free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.

5

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

6

Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9.

7

Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.

8

Boix, P. P.; Agarwala, S.; Koh, T. M.; Mathews, N.; Mhaisalkar, S. G. Perovskite solar cells: Beyond methylammonium lead iodide. J. Phys. Chem. Lett. 2015, 6, 898–907.

9

Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.

10

Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127.

11

Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organicinorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

12

Cortecchia, D.; Dewi, H. A.; Sabba, D.; Baikie, T.; Soci, C.; Mathews, N. "Green" 2D hybrid perovskites for perovskitebased solar cells. In European Optical Society Annual Meeting (EOSAM 2014), Berlin, 2014.

13

Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 2014, 126, 11414–11417.

14

Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.

15

Leblanc, N.; Mercier, N.; Zorina, L.; Simonov, S.; Auban-Senzier, P.; Pasquier, C. Large spontaneous polarization and clear hysteresis loop of a room-temperature hybrid ferroelectric based on mixed-halide [BiI3Cl2] polar chains and methylviologen dication. J. Am. Chem. Soc. 2011, 133, 14924–14927.

16

Mitzi, D. B.; Brock, P. Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. Inorg. Chem. 2001, 40, 2096–2104.

17

Kawai, T.; Ishii, A.; Kitamura, T.; Shimanuki, S.; Iwata, M.; Ishibashi, Y. Optical absorption in band-edge region of (CH3NH3)3Bi2I9 single crystals. J. Phys. Soc. Jpn. 1996, 65, 1464–1468.

18

Jakubas, R.; Zaleski, J.; Sobczyk, L. Phase transitions in (CH3NH3)3Bi2I9 (MAIB). Ferroelectrics 1990, 108, 109–114.

19

Fisher, G. A.; Norman, N. C. The structures of the group 15 element(III) halides and halogenoanions. Adv. Inorg. Chem. 1994, 41, 233–271.

20

Kawai, T.; Shimanuki, S. Optical studies of (CH3NH3)3Bi2I9 single crystals. Phys. Stat. Sol. (b) 1993, 177, K43–K45.

21

Murphy, A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 2007, 91, 1326–1337.

22

Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 2014, 4, 6677.

23

Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66, 1–27.

24

Ren, S. Q.; Chang, L. Y.; Lim, S. K.; Zhao, J.; Smith, M.; Zhao, N.; Bulović, V.; Bawendi, M.; Gradečak, S. Inorganicorganic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires. Nano Lett. 2011, 11, 3998–4002.

25

Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.

26

Chen, Z.; Wang, J. J.; Ren, Y. H.; Yu, C. L.; Shum, K. Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 2012, 101, 093901.

27

Hrizi, C.; Chaari, N.; Abid, Y.; Chniba-Boudjada, N.; Chaabouni, S. Structural characterization, vibrational and optical properties of a novel one-dimensional organic–inorganic hybrid based-iodobismuthate(III) material, [C10H7NH3]BiI4. Polyhedron 2012, 46, 41–46.

28

Leblanc, N.; Mercier, N.; Allain, M.; Toma, O.; Auban-Senzier, P.; Pasquier, C. The motley family of polar compounds (MV)[M(X5-x X′x)] based on anionic chains of trans-connected M(III)(X, X′)6 octahedra (M = Bi, Sb; X, X′ = Cl, Br, I) and methylviologen (MV) dications. J. Solid State Chem. 2012, 195, 140–148.

29

Liu, B.; Xu, L.; Guo, G. -C.; Huang, J. -S. Three inorganic–organic hybrids of bismuth(Ⅲ) iodide complexes containing substituted 1, 2, 4-triazole organic components with charaterizations of diffuse reflectance spectra. J.Solid State Chem. 2006, 179, 1611–1617.

Nano Research
Pages 692-702
Cite this article:
Lyu M, Yun J-H, Cai M, et al. Organic–inorganic bismuth (Ⅲ)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Research, 2016, 9(3): 692-702. https://doi.org/10.1007/s12274-015-0948-y
Part of a topical collection:

1085

Views

357

Crossref

N/A

Web of Science

349

Scopus

0

CSCD

Altmetrics

Received: 23 June 2015
Revised: 15 November 2015
Accepted: 17 November 2015
Published: 09 January 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return