AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Influence of dielectrics with light absorption on the photonic bandgap of porous alumina photonic crystals

Guoliang ShangGuangtao Fei( )Yue LiLide Zhang
Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanostructuresInstitute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesP. O. Box 1129Hefei230031China
Show Author Information

Graphical Abstract

Abstract

In this work, the influences of dielectrics with light absorption on the photonic bandgaps (PBGs) of porous alumina photonic crystals (PCs) were studied. Transmittance spectra of porous alumina PCs adsorbing ethanol showed that all the PBGs positions red-shifted; however, the transmittance of the PBG bottom showed different trends when the PBGs were located in different wavelength regions. In the near infrared region, liquid ethanol has strong light absorption, and, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs first increased and then decreased. However, in the visible light region, liquid ethanol has little light absorption, and thus, with the increase in adsorption, the PBG bottom transmittance of porous alumina PCs increased gradually all the time. Simulated results were consistent with the experimental results. The capillary condensation of organic vapors in the pores of porous alumina accounted for the change in the PBG bottom transmittance. The nonnegligible light absorption of the organic vapors was the cause of the decrease in the transmittance. The results for porous alumina PC adsorbing methanol, acetone, and toluene further confirmed the influences of light absorption on the PBG bottomed transmittance.

Electronic Supplementary Material

Download File(s)
nr-9-3-703_ESM.pdf (1.9 MB)

References

1

Yablonovitch, E. Inhibited spontaneous emission in solid- state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059-2062.

2

John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486-2489.

3

Lee, K.; Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534-9537.

4

Ruminski, A. M.; King, B. H.; Salonen, J.; Snyder, J. L.; Sailor, M. J. Porous silicon-based optical microsensors for volatile organic analytes: Effect of surface chemistry on stability and specificity. Adv. Funct. Mater. 2010, 20, 2874-2883.

5

Ko, D. H.; Tumbleston, J. R.; Zhang, L.; Williams, S.; DeSimone, J. M.; Lopez, R.; Samulski, E. T. Photonic crystal geometry for organic solar cells. Nano Lett. 2009, 9, 2742-2746.

6

Guldin, S.; Hüttner, S.; Kolle, M.; Welland, M. E.; Müller- Buschbaum, P.; Friend, R. H.; Steiner, U.; Tétreault, N. Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 2010, 10, 2303-2309.

7

Colodrero, S.; Forneli, A.; López-López, C.; Pellejà, L.; Míguez, H.; Palomares, E. Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals. Adv. Funct. Mater. 2012, 22, 1303-1310.

8

Dowling, J. P.; Scalora, M.; Bloemer, M. J.; Bowden, C. M. The photonic band edge laser: A new approach to gain enhancement. J. Appl. Phys. 1994, 75, 1896-1899.

9

Akahane, Y.; Asano, T.; Song, B. S.; Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 2003, 425, 944-947.

10

Masuda, H.; Yamada, M.; Matsumoto, F.; Yokoyama, S.; Mashiko, S.; Nakao, M.; Nishio, K. Lasing from two- dimensional photonic crystals using anodic porous alumina. Adv. Mater. 2006, 18, 213-216.

11

Wang, B.; Fei, G. T.; Wang, M.; Kong, M. G.; Zhang, L. D. Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 2007, 18, 365601.

12

Guo, D. L.; Fan, L. X.; Wang, F. H.; Huang, S. Y.; Zou, X. W. Porous anodic aluminum oxide Bragg stacks as chemical sensors. J. Phys. Chem. C 2008, 112, 17952-17956.

13

Wang, Z. H.; Zhang, J. H.; Xie, J.; Li, C.; Li, Y. F.; Liang, S.; Tian, Z. C.; Wang, T. Q.; Zhang, H.; Li, H. B.; et al. Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band. Adv. Funct. Mater. 2010, 20, 3784-3790.

14

Choi, S. Y.; Mamak, M.; von Freymann, G.; Chopra, N.; Ozin, G. A. mesoporous Bragg stack color tunable sensors. Nano Lett. 2006, 6, 2456-2461.

15

Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Zhang, L. D. Preparation of narrow photonic bandgaps located in the near infrared region and their applications in ethanol gas sensing. J. Mater. Chem. C 2013, 1, 5285-5291.

16

Lee, K.; Asher, S. A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534-9537.

17

Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Ouyang, H. M.; Zhang, L. D. Fano resonance in anodic aluminum oxide based photonic crystals. Sci. Rep. 2014, 4, 3601.

18

Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D. Photonic crystals: Molding the Flow of Light, 2nd ed.; Princeton University Press: Princeton, 2008.

19

Zhang, Y. Q.; Wang, J. X.; Ji, Z. Y.; Hu, W. P.; Jiang, L.; Song, Y. L.; Zhu, D. B. Solid-state fluorescence enhancement of organic dyes by photonic crystals. J. Mater. Chem. 2007, 17, 90-94.

20

Casanova, F.; Chiang, C. E.; Li, C. P.; Roshchin, I. V.; Ruminski, A. M.; Sailor, M. J.; Schuller, I. K. Gas adsorption and capillary condensation in nanoporous alumina films. Nanotechnology 2008, 19, 315709.

21

Bruschi, L.; Mistura, G.; Liu, L. F.; Lee, W.; Gösele, U.; Coasne, B. Capillary condensation and evaporation in alumina nanopores with controlled modulations. Langmuir 2010, 26, 11894-11898.

22

Wallacher, D.; Künzner, N.; Kovalev, D.; Knorr, N.; Knorr, K. Capillary condensation in linear mesopores of different shape. Phys. Rev. Lett. 2004, 92, 195704.

23

Horikawa, T.; Do, D. D.; Nicholson, D. Capillary condensation of adsorbates in porous materials. Adv. Colloid Interfac. 2011, 169, 40-58.

24

Barthelemy, P.; Ghulinyan, M.; Gaburro, Z.; Toninelli, C.; Pavesi, L.; Wiersma, D. S. Optical switching by capillary condensation. Nat. Photonics 2007, 1, 172-175.

25

Siderius, D. W.; Shen, V. K. Use of the grand canonical transition-matrix Monte Carlo method to model gas adsorption in porous materials. J. Phys. Chem. C 2013, 117, 5861-5872.

26

Kierlik, E.; Monson, P. A.; Rosinberg, M. L.; Sarkisov, L.; Tarjus, G. Capillary condensation in disordered porous materials: Hysteresis versus equilibrium behavior. Phys. Rev. Lett. 2001, 87, 055701.

27

Broseta, D.; Barré, L.; Vizika, O.; Shahidzadeh, N.; Guilbaud, J. -P.; Lyonnard, S. Capillary condensation in a fractal porous medium. Phys. Rev. Lett. 2001, 86, 5313-5316.

28

Jin, C. J.; Cheng, B. Y.; Man, B. Y.; Zhang, D. Z.; Ban, S. Z.; Sun, B.; Li, L. M.; Zhang, X. D.; Zhang, Z. Q. Two- dimensional metallodielectric photonic crystal with a large band gap. Appl. Phys. Lett. 1999, 75, 1201-1203.

29

Hossain, M. M.; Chen, G. Y.; Jia, B. H.; Wang, X. H.; Gu, M. Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals. Opt. Express 2010, 18, 9048-9054.

30

Zhang, Z. M.; Du, G. Q.; Jiang, H. T.; Li, Y. H.; Wang, Z. S.; Chen, H. Complete absorption in a heterostructure composed of a metal and a doped photonic crystal. J. Opt. Soc. Am. B 2010, 27, 909-913.

31

Sigalas, M. M.; Chan, C. T.; Ho, K. M.; Soukoulis C. M. Metallic photonic band-gap materials. Phys. Rev. B 1995, 52, 11744-11750.

32

Shang, G. L.; Fei, G. T.; Xu, S. H.; Yan, P.; Zhang L. D. Preparation of the very uniform pore diameter of anodic alumina oxidation by voltage compensation mode. Mater. Lett. 2013, 110, 156-159.

33

Bendickson, J. M.; Dowling, J. P.; Scalora, M. Analytic expressions for the electromagnetic mode density in finite, one-dimensional photonic band-gap structures. Phys. Rev. E 1996, 53, 4107-4121.

34

Choy, T. C. Effective Medium Theory: Principles and Applications; Oxford University Press: Oxford, 1999.

35

Casanova, F.; Chiang, C. E.; Li, C. P.; Schuller, I. K. Direct observation of cooperative effects in capillary condensation: The hysteretic origin. Appl. Phys. Lett. 2007, 91, 243103.

Nano Research
Pages 703-712
Cite this article:
Shang G, Fei G, Li Y, et al. Influence of dielectrics with light absorption on the photonic bandgap of porous alumina photonic crystals. Nano Research, 2016, 9(3): 703-712. https://doi.org/10.1007/s12274-015-0949-x

610

Views

13

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 14 July 2015
Revised: 16 November 2015
Accepted: 21 November 2015
Published: 13 January 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return