AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production

Ning Zhang1Yang Qu1( )Kai Pan1Guofeng Wang1( )Yadong Li2
Key Laboratory of Functional Inorganic Material ChemistryMinistry of EducationSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
Department of ChemistryTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals has proven to be challenging. Here, pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals were prepared. Furthermore, a new magnesium titanate, Mg1.2Ti1.8O5, was synthesized via a solution-based route for the first time. As hydrogen evolution photocatalysts, both pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals exhibit excellent hydrogen production efficiency. In comparison with pure MgTiO3 nanocrystals, the asprepared Mg1.2Ti1.8O5 nanocrystals exhibited four times as much photocatalytic hydrogen production activity, up to 40 μmol·h–1. Photoelectrochemical analysis, including linear sweep voltammetry, transient photocurrent measurement, electrochemical impedance spectroscopy, and construction of Mott-Schottky plots, demonstrated that the enhanced photocatalytic activity was attributed to the large surface area, fast photoelectron transfer, higher carrier density, and efficient charge separation of the Mg1.2Ti1.8O5 nanocrystals.

Electronic Supplementary Material

Download File(s)
nr-9-3-726_ESM.pdf (1.2 MB)

References

1

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.

2

Xiao, X. L.; Wang, L.; Wang, D. S.; He, X. M.; Peng, Q.; Li, Y. D. Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2009, 2, 923-930.

3

Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1-7.

4

Li, X. W.; Cao, H. Q.; Yin, J. F. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Res. 2011, 4, 470-482.

5

Lv, X. J.; Fu, W. F.; Chang, H. X.; Zhang, H.; Cheng, J. S.; Zhang, G. J.; Song, Y.; Hu, C. Y.; Li. J. H. Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. J. Mater. Chem. 2012, 22, 1539-1546.

6

Zhang, R. Y.; Shen, D. K.; Xu, M.; Feng, D.; Li, W.; Zheng, G. F.; Elzatahry, A. A.; Zhao, D. Y. Ordered macro-/mesoporous anatase films with high thermal stability and crystallinity for photoelectrocatalytic water-splitting. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201301725.

7

Qu, Y.; Zhou, W.; Xie, Y.; Jiang, L.; Wang, J. Q.; Tian, G. H.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. A novel phase-mixed MgTiO3-MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem. Commun. 2013, 49, 8510-8512.

8

Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718-1728.

9

Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175-183.

10

Castelli, I. E.; Landis, D. D.; Thygesen, K. S.; Dahl, S.; Chorkendorff, I.; Jaramillo, T, F.; Jacobsen, K. W. New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ. Sci. 2012, 5, 9034-9043.

11

Bian, Z. F.; Tachikawa, T. T.; Zhang, P.; Fujitsuka, M.; Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458-465.

12

Zhou, W.; Lin, L. J.; Wang, W. J.; Zhang, L. L.; Wu, Q.; Li, J. H.; Guo, L. Hierarchial mesoporous hematite with "electron-transport channels" and its improved performances in photocatalysis and lithium ion batteries. J. Phys. Chem. C, 2011, 115, 7126-7133.

13

Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 2013, 6, 3007-3014.

14

Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555-1614.

15

Jung, M. J.; Nam, K. H.; Chung, Y. M.; Boo, J. H.; Han, J. G. The physiochemical properties of TiOxNy films with controlled oxygen partial pressure. Surf. Coat. Technol. 2003, 171, 71-74.

16

Hou, Y. L.; Kondoh, H.; Ohta, T. Size-controlled synthesis and magnetic studies of monodisperse FePd nanoparticles. J. Nanosci. Nanotechnol. 2009, 9, 202-208.

17

Ivanova, A.; Fattakhova-Rohlfing, D.; Kayaalp, B. E.; Rathouský, J.; Bein, T. Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J. Am. Chem. Soc. 2014, 136, 5930-5937.

18

Gu, D.; Li, W.; Wang, F.; Bongard, H.; Spliethoff, B.; Schmidt, W.; Weidenthaler, C.; Xia, Y. Y.; Zhao, D. Y.; Schüth, F. Controllable synthesis of mesoporous peapod-like Co3O4@Carbon nanotube arrays for high-performance lithium- ion batteries. Angew. Chem., Int. Ed. 2015, 54, 7060-7064.

19

Wang, H.; Gao, J.; Guo, T. Q.; Wang, R. M.; Guo, L.; Liu, Y.; Li, J. H. Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties. Chem. Commun. 2012, 48, 275-277.

20

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731-759.

21

Zhou, H. L.; Qu, Y. Q.; Zeid, T.; Duan, X. F. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732-6743.

22

Li, W.; Wu, Z. X.; Wang, J X.; Elzatahry, A. A.; Zhao, D. Y. A perspective on mesoporous TiO2 materials. Chem. Mater. 2014, 26, 287-298.

23

Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280-9283.

Nano Research
Pages 726-734
Cite this article:
Zhang N, Qu Y, Pan K, et al. Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Research, 2016, 9(3): 726-734. https://doi.org/10.1007/s12274-015-0951-3

676

Views

44

Crossref

N/A

Web of Science

41

Scopus

4

CSCD

Altmetrics

Received: 14 August 2015
Revised: 16 November 2015
Accepted: 20 November 2015
Published: 13 January 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return