AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate

Xiaozhen Hu1,2Sangeetha Rajendran2Yuansi Yao2Zheng Liu2Karthikeyan Gopalsamy2Li Peng2Chao Gao1,2( )
State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620China
MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
Show Author Information

Graphical Abstract

Abstract

Nacre is a lightweight, strong, stiff, and tough material, which makes it a mimicking object for material design. Many attempts to mimic nacre by various methods resulted in the synthesis of artificial nacre with excellent properties. However, the fabrication procedure was very laborious and time-consuming due to the sequential steps, and only limited-sized materials could be obtained. Hence, a novel design enabling scalable production of high-performance artificial nacre with uniform layered structures is urgently needed. We developed a novel wet-spinning assembly technique to rapidly manufacture continuous nacremimic graphene oxide (GO, brick)-sodium alginate (SA, mortar) films and fibers with excellent mechanical properties. At high concentrations, the GO-SA mixtures spontaneously produced liquid crystals (LCs) due to the template effect of GO, and continuous, 6 m long nacre-like GO-SA films were wet-spun from the obtained GO-SA liquid crystalline (LC) dope with a speed of up to 1.5 m/min. The assembled macroscopic GO-SA composites inherited the alignment of the GO sheets from the LC phase, and their mechanical properties were investigated by a joint experimental-computational study. The tensile tests revealed that the maximum strength (σ) and Young's modulus (E) of the obtained films reached 239.6 MPa and 22.4 GPa, while the maximum values of σ and E for the fibers were 784.9 MPa and 58 GPa, respectively. The described wet-spinning assembly method is applicable for a large-scale and fast production of high-performance continuous artificial nacre.

Electronic Supplementary Material

Download File(s)
nr-9-3-735_ESM.pdf (6 MB)

References

1

Yao, H. B.; Fang, H. Y. X.; Wang, H.; Yu, S. H. Hierarchical assembly of micro-/nano-building blocks: Bio-inspired rigid structural functional materials. Chem. Soc. Rev. 2011, 40, 3764-3785.

2

Wang, J. F.; Cheng, Q. F.; Tang, Z. Y. Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 2012, 41, 1111-1129.

3

Cheng, Q. F.; Jiang, L.; Tang, Z. Y. Bioinspired layered materials with superior mechanical performance. Acc. Chem. Res. 2014, 47, 1256-1266.

4

Tang, Z. Y.; Kotov, N. A.; Magonov, S.; Ozturk, B. Nanostructured artificial nacre. Nat. Mater. 2003, 2, 413-418.

5

Podsiadlo, P.; Tang, Z. Y.; Shim, B. S.; Kotov, N. A. Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett. 2007, 7, 1224-1231.

6

Podsiadlo, P.; Liu, Z. Q.; Paterson, D.; Messersmith, P. B.; Kotov, N. A. Fusion of seashell nacre and marine bioadhesive analogs: High-strength nanocomposite by layer-by-layer assembly of clay and L-3, 4-dihydroxyphenylalanine polymer. Adv. Mater. 2007, 19, 949-955.

7

Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80-83.

8

Yao, H. B.; Fang, H. Y.; Tan, Z. H.; Wu, L. H.; Yu, S. H. Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films. Angew. Chem., Int. Ed. 2010, 49, 2140-2145.

9

Bonderer, L. J.; Studart, A. R.; Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science 2008, 319, 1069-1073.

10

Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Freezing as a path to build complex composites. Science 2006, 311, 515-518.

11

Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, Bio-inspired hybrid materials. Science 2008, 322, 1516-1520.

12

Walther, A.; Bjurhager, I.; Malho, J. M.; Pere, J.; Ruokolainen, J.; Berglund, L. A.; Ikkala, O. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nan. Lett. 2010, 10, 2742-2748.

13

Walther, A.; Bjurhager, I.; Malho, J. M.; Ruokolainen, J.; Berglund, L.; Ikkala, O. Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. Angew. Chem., Int. Ed. 2010, 49, 6448-6453.

14

Yao, H. B.; Tan, Z. H.; Fang, H. Y.; Yu, S. H. Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew. Chem., Int. Ed. 2010, 49, 10127-10131.

15

Xu, Y. X.; Hong, W. J.; Bai, H.; Li, C.; Shi, G. Q. Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 2009, 47, 3538-3543.

16

Wang, X. L.; Bai, H.; Yao, Z. Y.; Liu, A. R.; Shi, G. Q. Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J. Mater. Chem. 2010, 20, 9032-9036.

17

Cheng, Q. F.; Wu, M. X.; Li, M. Z.; Jiang, L.; Tang, Z. Y. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 3750-3755.

18

Wan, S. J.; Li, Y. C.; Peng, J. S.; Hu, H.; Cheng, Q. F.; Jiang, L. Synergistic toughening of graphene oxide-molybdenum disulfide-thermoplastic polyurethane ternary artificial nacre. ACS Nano 2015, 9, 708-714.

19

Cui, W.; Li, M. Z.; Liu, J. Y.; Wang, B.; Zhang, C.; Jiang, L.; Cheng, Q. F. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano 2014, 8, 9511-9517.

20

Behabtua, N.; Green, M. J.; Pasquali, M. Carbon nanotube- based neat fibers. Nano Today 2008, 3, 24-34.

21

Tuzlakoglu, K.; Alves, C. M.; Mano, J. F.; Reis, R. L. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromol. Biosci. 2004, 4, 811-819.

22

Pomfret, S. J.; Adams, P. N.; Comfort, N. P.; Monkman, A. P. Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 2000, 41, 2265-2269.

23

Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

24

Xu, Z.; Gao, C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267-1276.

25

Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Ultrastrong fibres assembled from giant graphene oxide sheets. Adv. Mater. 2013, 25, 188-193.

26

Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856-1861.

27

Hu, X. Z.; Xu, Z.; Liu, Z.; Gao, C. Liquid crystal self- templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 2013, 3, 2374.

28

Kou, L.; Gao, C. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers. Nanoscale 2013, 5, 4370-4378.

29

Liu, Z.; Xu, Z.; Hu, X. Z.; Gao, C. Lyotropic liquid crystal of polyacrylonitrile-grafted graphene oxide and its assembled continuous strong nacre-mimetic fibers. Macromolecules 2013, 46, 6931-6941.

30

Zhao, X. L.; Xu, Z.; Zheng, B. N.; Gao, C. Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer- grafted graphene oxide. Sci. Rep. 2013, 3, 3164.

31

Fang, B.; Peng, L.; Xu, Z.; Gao, C. Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors. ACS Nano 2015, 9, 5214-5222.

32

Liu, Z.; Li, Z.; Xu, Z.; Xia, Z. X.; Hu, X. Z.; Kou, L.; Peng, L.; Wei, Y. Y.; Gao, C. Wet-spun continuous graphene films. Chem. Mater. 2014, 26, 6786-6795.

33

Kou, L.; Liu, Z.; Huang, T. Q.; Zheng, B. N.; Tian, Z. Y.; Deng Z. S.; Gao, C. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes. Nanoscale 2015, 7, 4080-4087.

34

Huang, T. Q.; Zheng, B. N.; Liu, Z.; Kou L.; Gao, C. High rate capability supercapacitors assembled from wet-spun graphene films with a CaCO3 template. J. Mater. Chem. A 2015, 3, 1890-1895.

35

Hu, K. S.; Tolentino, L. S.; Kulkarni, D. D.; Ye, C. H.; Kumar, S.; Tsukruk, V. V. Written-in conductive patterns on robust graphene oxide biopaper by electrochemical microstamping. Angew. Chem., Int. Ed. 2013, 52, 13784-13788.

36

Tian, Y.; Cao, Y. W.; Wang, Y.; Yang, W. L.; Feng, J. C. Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv. Mater. 2013, 25, 2980-2983.

37

Zhang, M.; Huang, L.; Chen, J.; Li, C.; Shi, G. Q. Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv. Mater. 2014, 26, 7588-7592.

38

Zhao, X. L.; Gao, C. Progress of graphene-based nacre- mimetic layered materials. Acta Polymerica Sinica 2014, 1301-1313.

39

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457-460.

40

Park, S. J.; Lee, K. S.; Bozoklu, G.; Cai, W. W.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2008, 2, 572-578.

41

Park, S. J.; Dikin, D. A.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide sheets chemically cross-linked by polyallylamine. J. Phys. Chem. C 2009, 113, 15801-15804.

42

Cruz-Silva, R.; Morelos-Gomez, A.; Kim, H.; Jang, H.; Tristan, F.; Vega-Diaz, S.; Rajukumar, L. P.; Elías, A. L.; Perea- Lopez, N.; Suhr, J. et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano 2014, 8, 5959-5967.

43

Wan, S. J.; Peng, J. S.; Li, Y. C.; Hu, H.; Jiang, L.; Cheng, Q. F. Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan. ACS Nano 2015, 9, 9830-9836.

44

Cheng, Q. F.; Duan, J. L.; Zhang, Q.; Jiang, L. Learning from nature: Constructing integrated graphene-based artificial nacre. ACS Nano 2015, 9, 2231-2234.

45

Hu, X. Z.; Xu, Z.; Gao, C. Multifunctional, supramolecular, continuous artificial nacre fibres. Sci. Rep. 2012, 2, 767.

46

Compton, O. C.; Cranford, S. W.; Putz, K. W.; An, Z.; Brinson, L. C.; Buehler, M. J.; Nguyen, S. T. Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano 2012, 6, 2008-2019.

47

Qin, Z.; Gautieri, A.; Nair, A. K.; Inbar, H.; Buehler, M. J. Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface. Langmuir 2012, 28, 1982-1992.

48

Alder, B. J.; Wainwright, T. E. Studies in molecular dynamics. 1. General method. J. Chem. Phys. 1959, 31, 459-466.

Nano Research
Pages 735-744
Cite this article:
Hu X, Rajendran S, Yao Y, et al. A novel wet-spinning method of manufacturing continuous bio-inspired composites based on graphene oxide and sodium alginate. Nano Research, 2016, 9(3): 735-744. https://doi.org/10.1007/s12274-015-0952-2

755

Views

48

Crossref

N/A

Web of Science

50

Scopus

2

CSCD

Altmetrics

Received: 22 September 2015
Revised: 16 November 2015
Accepted: 22 November 2015
Published: 09 January 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return