Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, [Ru(bpy)3]2+ (bpy = 2, 2'-bipyridyl), was immobilized in H-CPPs via electrostatic interactions. The intrinsic properties of [Ru(bpy)3]2+ were well retained. The resulting Rucontaining hollow polymers exhibited excellent catalytic activity, enhanced stability, and good recyclability when used for the oxidative hydroxylation of 4-methoxyphenylboronic acid to 4-methoxyphenol under visible-light irradiation. The attractive catalytic performance mainly resulted from efficient mass transfer and the maintenance of the chemical properties of the cationic Ru complex in the H-CPPs.
Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548-568.
Zhang, Y. G.; Riduan, S. N. Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083-2094.
Zou, X. Q.; Ren, H.; Zhu, G. S. Topology-directed design of porous organic frameworks and their advanced applications. Chem. Commun. 2013, 49, 3925-3936.
Ma, H. P.; Li, B.; Zhang, L. M.; Han, D.; Zhu, G. S. Targeted synthesis of core-shell porous aromatic frameworks for selective detection of nitro aromatic explosives via fluorescence two-dimensional response. J. Mater. Chem. A 2015, 3, 19346-19352.
Wang, W. L.; Zheng, A. M.; Zhao, P. Q.; Xia, C. G.; Li, F. W. Au-NHC@porous organic polymers: Synthetic control and its catalytic application in alkyne hydration reactions. ACS Catal. 2014, 4, 321-327.
Lu, W. G.; Wei, Z. W.; Yuan, D. Q.; Tian, J.; Fordham, S.; Zhou, H. -C. Rational design and synthesis of porous polymer networks: Toward high surface area. Chem. Mater. 2014, 26, 4589-4597.
Fang, Q. R.; Gu, S.; Zheng, J.; Zhuang, Z. B.; Qiu, S. L.; Yan, Y. S. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem., Int. Ed. 2014, 53, 2878-2882.
Arab, P.; Parrish, E.; İslamoğlu, T.; El-Kaderi, H. M. Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation. J. Mater. Chem. A 2015, 3, 20586-20594.
Fischer, S.; Schmidt, J.; Strauch, P.; Thomas, A. An anionic microporous polymer network prepared by the polymerization of weakly coordinating anions. Angew. Chem., Int. Ed. 2013, 52, 12174-12178.
Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816- 19822.
Xie, Z. G.; Wang, C.; deKrafft, K. E.; Lin, W. B. Highly stable and porous cross-linked polymers for efficient photocatalysis. J. Am. Chem. Soc. 2011, 133, 2056-2059.
Chen, L.; Yang, Y.; Jiang, D. L. CMPs as scaffolds for constructing porous catalytic frameworks: A built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 2010, 132, 9138-9143.
Chan-Thaw, C. E.; Villa, A.; Katekomol, P.; Su, D. S.; Thomas, A.; Prati, L. Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett. 2010, 10, 537-541.
Li, Y. S.; Shi, J. L. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Adv. Mater. 2014, 26, 3176-3205.
Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 2015, 6, 6786.
Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk-shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246-262.
Kang, N.; Park, J. H.; Jin, M. S.; Park, N.; Lee, S. M.; Kim, H. J.; Kim, J. M.; Son, S. U. Microporous organic network hollow spheres: Useful templates for nanoparticulate Co3O4 hollow oxidation catalysts. J. Am. Chem. Soc. 2013, 135, 19115-19118.
Chun, J.; Kang, S.; Park, N.; Park, E. J.; Jin, X.; Kim, K. D.; Seo, H. O.; Lee, S. M.; Kim, H. J.; Kwon, W. H. et al. Metal-organic framework@microporous organic network: Hydrophobic adsorbents with a crystalline inner porosity. J. Am. Chem. Soc. 2014, 136, 6786-6789.
Li, B. Y.; Yang, X. J.; Xia, L. L.; Majeed, M. I.; Tan, B. Hollow microporous organic capsules. Sci. Rep. 2013, 3, 2128.
Wang, C.; Xie, Z. G.; deKrafft, K. E.; Lin, W. B. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445-13454.
Ashford, D. L.; Sherman, B. D.; Binstead, R. A.; Templeton, J. L.; Meyer, T. J. Electro-assembly of a chromophore- catalyst bilayer for water oxidation and photocatalytic water splitting. Angew. Chem., Int. Ed. 2015, 54, 4778-4781.
Waki, M.; Maegawa, Y.; Hara, K.; Goto, Y.; Shirai, S.; Yamada, Y.; Mizoshita, N.; Tani, T.; Chun, W. J.; Muratsugu, S. et al. A solid chelating ligand: Periodic mesoporous organosilica containing 2, 2'-bipyridine within the pore walls. J. Am. Chem. Soc. 2014, 136, 4003-4011.
Sabater, S.; Mata, J. A.; Peris, E. Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal. 2014, 4, 2038-2047.
Genna, D. T.; Wong-Foy, A. G.; Matzger, A. J.; Sanford, M. S. Heterogenization of homogeneous catalysts in metal- organic frameworks via cation exchange. J. Am. Chem. Soc. 2013, 135, 10586-10589.
Shakeri, M.; Roiban, L.; Yazerski, V.; Prieto, G.; Klein Gebbink, R. J. M.; de Jongh, P. E.; de Jong, K. P. Engineering and sizing nanoreactors to confine metal complexes for enhanced catalytic performance. ACS Catal. 2014, 4, 3791- 3796.
Lebedeva, M. A.; Chamberlain, T. W.; Schröder, M.; Khlobystov, A. N. New pathway for heterogenization of molecular catalysts by non-covalent interactions with carbon nanoreactors. Chem. Mater. 2014, 26, 6461-6466.
Park, N.; Kang, D.; Ahn, M. C.; Kang, S.; Lee, S. M.; Ahn, T. K.; Jaung, J. Y.; Shin, H. -W.; Son, S. U. Hollow and sulfonated microporous organic polymers: Versatile platforms for non-covalent fixation of molecular photocatalysts. RSC Adv. 2015, 5, 47270-47274.
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.
Holst, J. R.; Stöckel, E.; Adams, D. J.; Cooper, A. I. High surface area networks from tetrahedral monomers: Metal- catalyzed coupling, thermal polymerization, and "click" chemistry. Macromolecules 2010, 43, 8531-8538.
Xie, L. H.; Suh, M. P. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. Chem. —Eur. J. 2013, 19, 11590-11597.
Plietzsch, O.; Schilling, C. I.; Grab, T.; Grage, S. L.; Ulrich, A. S.; Comotti, A.; Sozzani, P.; Muller, T.; Brase, S. Click chemistry produces hyper-cross-linked polymers with tetrahedral cores. New J. Chem. 2011, 35, 1577-1581.
Pandey, P.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. A "click-based" porous organic polymer from tetrahedral building blocks. J. Mater. Chem. 2011, 21, 1700-1703.
Bebensee, F.; Bombis, C.; Vadapoo, S. R.; Cramer, J. R.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. On-surface azide-alkyne cycloaddition on Cu(111): Does it "click" in ultrahigh vacuum? J. Am. Chem. Soc. 2013, 135, 2136-2139.
Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics- controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. J. Am. Chem. Soc. 2012, 134, 11864-11867.
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322-5363.
Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.
Ma, H. P.; Ren, H.; Zou, X. Q.; Meng, S.; Sun, F. X.; Zhu, G. S. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures. Polym. Chem. 2014, 5, 144-152.
Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jørgensen, K. A.; Xiao, W. J. Highly efficient aerobic oxidative hydroxylation of arylboronic acids: Photoredox catalysis using visible light. Angew. Chem., Int. Ed. 2012, 51, 784-788.
Wang, C.; deKrafft, K. E.; Lin, W. B. Pt nanoparticles@photoactive metal-organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211-7214.
Yin, Q. S.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342-345.
Ghosh, A.; Kumar, R. Efficient heterogeneous catalytic systems for enantioselective hydrogenation of prochiral carbonyl compounds. J. Catal. 2004, 228, 386-396.