AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries

Liyan Zhou1Shancheng Yan2( )Lijia Pan1,3Xinran Wang1,3Yuqiao Wang4Yi Shi1,3( )
Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210093China
School of Geography and Biological InformationNanjing University of Posts and TelecommunicationsNanjing210023China
National Laboratory of Solid State MicrostructuresSchool of Electronic Science and EngineeringNanjing UniversityNanjing210093China
Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySchool of Chemistry and Chemical EngineeringSoutheast UniversityNanjing211189China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional transition-metal dichalcogenides (WS2 and SnS2) have recently joined the family of energy storage materials (for lithium-ion batteries and supercapacitors) as a result of their favorable ion intercalation. So far, challenges in the synthesis of phase-pure WS2, restacking between WS2 nanosheets, low electronic conductivity, and the brittle nature of WS2, severely limit its use Li-ion battery application. Herein, we develop a facile low temperature solution sulfuration process to improve battery performance dramatically. The sulfuration process is demonstrated to be effective in converting WO3 impurities to WS2, and in repairing the sulfur vacancies, to improve cyclability and rate capability. Lithium-ion battery measurements demonstrate that the stable capacity of the WS2 anode could be enhanced by 48.4% via sulfuration reprocessing, i.e., from 381.7 to 566.8 mAh/g at a relatively high current density of 0.8 A/g after 50 cycles. We further show that the sulfuration process can be readily extended to other dichalcogenides, and may provide a class of versatile electrode materials for lithium-ion batteries with improved electrochemical characteristics.

Electronic Supplementary Material

Download File(s)
nr-9-3-857_ESM.pdf (1.5 MB)

References

1

Fang, X. P.; Hua, C. X.; Wu, C. R.; Wang, X. F.; Shen, L. Y.; Kong, Q. Y.; Wang, J. Z.; Hu, Y. S.; Wang, Z. X.; Chen, L. Q. Synthesis and electrochemical performance of graphene-like WS2. Chem. —Eur. J. 2013, 19, 5694–5700.

2

Yang, J.; Voiry, D.; Ahn, S. J.; Kang, D.; Kim, A. Y.; Chhowalla, M.; Shin, H. S. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 13751–13754.

3

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

4

Ma, Z. N.; Hu, Z. P.; Zhao, X. D.; Tang, Q.; Wu, D. H.; Zhou, Z.; Zhang, L. X. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 2014, 118, 5593–5599.

5

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263– 275.

6

Kumar, A.; Ahluwalia, P. K. Electronic transport and dielectric properties of low-dimensional structures of layered transition metal dichalcogenides. J. Alloy. Compd. 2014, 587, 459–467.

7

Chen, D. Y.; Ji, G.; Ding, B.; Ma, Y.; Qu, B. H.; Chen, W. X.; Lee, J. Y. In situ nitrogenated graphene–few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale 2013, 5, 7890–7896.

8

Feng, C. Q.; Ma, J.; Li, H.; Zeng, R.; Guo, Z. P.; Liu, H. K. Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Mater. Res. Bull. 2009, 44, 1811–1815.

9

Feng, C. Q.; Huang, L. F.; Guo, Z. P.; Liu, H. K. Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochem. Commum. 2007, 9, 119–122.

10

Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192–4195.

11

Liu, H.; Su, D. W.; Wang, G. X.; Qiao, S. Z. An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J. Mater. Chem. 2012, 22, 17437–17440.

12

Shivaa, K.; Matte, H. S. S. R.; Rajendraa, H. B.; Bhattacharyya, A. J.; Rao, C. N. R. Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries. Nano Energy 2013, 2, 787–793.

13

Xu, X. D.; Rout, C. S.; Yang, J.; Cao, R. G.; Oh, P.; Shin, H. S.; Cho, J. Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. J. Mater. Chem. A 2013, 1, 14548–14554.

14

Liu, Y.; Wang, W.; Huang, H. B.; Gu, L.; Wang, Y. W.; Peng, X. S. The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries. Chem. Commun. 2014, 50, 4485–4488.

15

Chen, D. Y.; Chen, W. X.; Ma, L.; Ji, G.; Chang, K.; Lee, J. Y. Graphene-like layered metal dichalcogenide/graphene composites: Synthesis and applications in energy storage and conversion. Mater. Today 2014, 17, 184–193.

16

Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.

17

Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. S.; Li, J. B.; Wei, S. H. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025–7031.

18

Mao, X. Z.; Xu, Y.; Xue, Q. X.; Wang, W. X.; Gao, D. Q. Ferromagnetism in exfoliated tungsten disulfide nanosheets. Nanoscale Res. Lett. 2013, 8, 430.

19

Pumera, M.; Sofer, Z.; Ambrosia, A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2, 8981–8987.

20

Jeffery, A. A.; Nethravathi, C.; Rajamathi, M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M = Mo, W). J. Phys. Chem. C 2014, 118, 1386–1396.

21

Jung, Y. W.; Shen, J.; Liu, Y. H.; Woods, J. M.; Sun, Y.; Cha, J. J. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano Lett. 2014, 14, 6842–6849.

22

Brunken, S.; Mientus, R.; Ellmer, K. Metal-sulfide assisted rapid crystallization of highly (001)-textured tungsten disulphide (WS2) films on metallic back contacts. Phys. Status Solidi A 2012, 209, 317–322.

23

Morrish, R.; Haak, T.; Wolden, C. A. Low-temperature synthesis of n‑type WS2 thin films via H2S plasma sulfurization of WO3. Chem. Mater. 2014, 26, 3986–3992.

24

Wei, J. W.; Ma, Z. W.; Zeng, H.; Wang, Z. Y.; Wei, Q.; Peng, P. Electronic and optical properties of vacancy-doped WS2 monolayers. AIP Adv. 2012, 2, 042141.

25

Zou, Y. Q.; Wang, Y. Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries. Chem. Eng. J. 2013, 229, 183–189.

26

Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from two- dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

27

Liang, L. B.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401.

28

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tane, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

29

Bhandavat, R.; David, L.; Singh, G. Synthesis of surface- functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1523–1530.

30

Liu, Y.; Wang, W.; Wang, Y. W.; Peng, X. S. Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 2014, 7, 25–32.

Nano Research
Pages 857-865
Cite this article:
Zhou L, Yan S, Pan L, et al. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries. Nano Research, 2016, 9(3): 857-865. https://doi.org/10.1007/s12274-015-0966-9

697

Views

61

Crossref

N/A

Web of Science

67

Scopus

5

CSCD

Altmetrics

Received: 03 August 2015
Revised: 01 December 2015
Accepted: 02 December 2015
Published: 09 January 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return