AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries

Caixia Xu( )Qin HaoDianyun Zhao
School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022China
Show Author Information

Graphical Abstract

Abstract

Nanoporous (NP) Si/Cu composites are fabricated by means of alloy refining followed by facile electroless dealloying in mild conditions. NP-Si/Cu composites with a three-dimensional porous network nanoarchitecture with different Cu contents are obtained by changing the feeding ratio of alloy precursors. Owing to the rich porosity and integration of conductive Cu into a nanoporous Si backbone, the NP-Si85Cu15 composite exhibits modified conductivity and reduced volumetric expansion/fracture during repeated charging-discharging processes in lithium-ion batteries (LIBs), thus exhibiting much higher cycling reversibility than NP-Si92Cu8 and pure NP-Si. With the advantages of unique performance and easy preparation, NP-Si/Cu composite has potential for application as an advanced anode material for LIBs.

Electronic Supplementary Material

Download File(s)
12274_2015_973_MOESM1_ESM.pdf (1 MB)

References

1

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167– 1176.

2

Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2014, 7, 14–18.

3

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

4

McSweeney, W.; Geaney, H.; O'Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395–1442.

5

Kim, H.; Lee, E. J.; Sun, Y. K. Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries. Mater. Today 2014, 17, 285–297.

6

Zhao, X.; Li, M. J.; Chang, K. H.; Lin, Y. M. Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries. Nano Res. 2014, 7, 1429–1438.

7

Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654–2662.

8

Tao, H. C.; Fan, L. Z.; Song, W. L.; Wu, M.; He, X. B.; Qu, X. H. Hollow core–shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale 2014, 6, 3138–3142.

9

Jing, S. L.; Jiang, H.; Hu, Y. J.; Shen, J. H.; Li, C. Z. Face- to-face contact and open-void coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life. Adv. Funct. Mater. 2015, 25, 5395–5401.

10

Thakur, M.; Isaacson, M.; Sinsabaugh, S. L.; Wong, M. S.; Biswal, S. L. Gold-coated porous silicon films as anodes for lithium ion batteries. J. Power Sources 2012, 205, 426–432.

11

Chen, D. Y.; Mei, X.; Ji, G.; Lu, M. H.; Xie, J. P.; Lu, J. M.; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem., Int. Ed. 2012, 51, 2409–2413.

12

Sun, L. M.; Wang, X. H.; Susantyoko, R. A.; Zhang, Q. Copper-silicon core–shell nanotube arrays for free-standing lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 15294–15297.

13

Kim, G.; Jeong, S.; Shin, J. H.; Cho, J.; Lee, H. 3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. ACS Nano 2014, 8, 1907–1912.

14

Zhang, S. C.; Du, Z. J.; Lin, R. X.; Jiang, T.; Liu, G. R.; Wu, X. M.; Weng, D. S. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries. Adv. Mater. 2010, 22, 5378–5382.

15

McDowell, M. T.; Lee, S. W.; Wang, C. M.; Cui, Y. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/ delithiation. Nano Energy 2012, 1, 401–410.

16

Jing, S. L.; Jiang, H.; Hu, Y. J.; Li, C. Z. Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode. J. Mater. Chem. A 2014, 2, 16360–16364.

17

Jing, S. L.; Jiang, H.; Hu, Y. J.; Li, C. Z. Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale 2014, 6, 14441–14445.

18

Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85–94.

19

Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015, 8, 1497–1504.

20

Jia, H. P.; Gao, P. F.; Yang, J.; Wang, J. L.; Nuli, Y. N.; Yang, Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 2011, 1, 1036–1039.

21

Ge, M. Y.; Lu, Y. H.; Ercius, P.; Rong, J. P.; Fang, X.; Mecklenburg, M.; Zhou, C. W. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 2014, 14, 261–268.

22

Zhu, J.; Gladden, C.; Liu, N.; Cui, Y.; Zhang, X. Nanoporous silicon networks as anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 440–443.

23

Hao, Q.; Wang, J. P.; Xu, C. X. Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries. J. Mater. Chem. A 2014, 2, 87–93.

24

Duan, H. M.; Hao, Q.; Xu, C. X. Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction. J. Power Sources 2015, 280, 483–490.

25

Hao, Q.; Zhao, D. Y.; Duan, H. M.; Zhou, Q. X.; Xu, C. X. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries. Nanoscale 2015, 7, 5320–5327.

26

Zhou, W. C.; Upreti, S.; Whittingham, M. S. Electrochemical performance of Al-Si-graphite composite as anode for lithium-ion batteries. Electrochem. Commun. 2011, 13, 158–161.

27

Sun, Z. B.; Wang, X. D.; Li, X. P.; Zhao, M. S.; Li, Y.; Zhu, Y. M.; Song, X. P. Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries. J. Power Sources 2008, 182, 353–358.

28

Zhou, W. C.; Jiang, T. C.; Zhou, H.; Wang, Y. X.; Fang, J. Y.; Whittingham, M. S. The nanostructure of the Si–Al eutectic and its use in lithium batteries. MRS Commun. 2013, 3, 119–121.

29

Guo, S.; Li, H. X.; Bai, H. M.; Tao, Z. L.; Chen, J. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. J. Power Sources 2014, 248, 1141–1148.

30

Xin, X.; Zhou, X. F.; Wang, F.; Yao, X. Y.; Xu, X. X.; Zhu, Y. M.; Liu, Z. P. A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J. Mater. Chem. 2012, 22, 7724–7730.

31

Venezia, A. M.; Liotta, L. F.; Deganello, G.; Schay, Z.; Guczi, L. Characterization of pumice-supported Ag-Pd and Cu-Pd bimetallic catalysts by X-ray photoelectron spectroscopy and X-ray diffraction. J. Catal. 1999, 182, 449–455.

32

Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 2010, 22, 2247–2250.

33

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

34

Yu, L.; Zhang, L.; Wu, H. B.; Zhang, G. Q.; Lou, X. W. Controlled synthesis of hierarchical CoxMn3−xO4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries. Energy Environ. Sci. 2013, 6, 2664–2671.

35

Zhu, Q. Y.; Wu, P.; Zhang, J. J.; Zhang, W. Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Cyanogel-derived formation of 3D nanoporous SnO2-MxOy (M = Ni, Fe, Co) hybrid networks for high-performance lithium storage. ChemSusChem 2015, 8, 131–137.

36

Chen, H. X.; Xiao, Y.; Wang, L.; Yang, Y. Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J. Power Sources 2011, 196, 6657– 6662.

37

Kim, H.; Han, B.; Choo, J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem., Int. Ed. 2008, 47, 10151– 10154.

Nano Research
Pages 908-916
Cite this article:
Xu C, Hao Q, Zhao D. Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries. Nano Research, 2016, 9(4): 908-916. https://doi.org/10.1007/s12274-015-0973-x

670

Views

77

Crossref

N/A

Web of Science

75

Scopus

4

CSCD

Altmetrics

Received: 22 September 2015
Revised: 29 November 2015
Accepted: 10 December 2015
Published: 19 January 2016
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return