AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

External stimuli controlled multiferroic charge-transfer crystals

Wei Qin1Xiaomin Chen2,3Jessica Lohrman4Maogang Gong1Guoliang Yuan3Manfred Wuttig2Shenqiang Ren1( )
Department of Mechanical EngineeringTemple UniversityPhiladelphiaPennsylvania19122USA
Department of Materials Science and EngineeringUniversity of MarylandCollege ParkMaryland20742USA
School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjing210094China
Department of ChemistryUniversity of KansasLawrenceKansas66045USA
Show Author Information

Graphical Abstract

Abstract

Multiferroic charge-transfer crystals have drawn significant interest due to their simultaneous dipolar and spin ordering. Numerous theoretical and experimental studies have shown that the molecular stacking between donor and acceptor complexes plays an important role in tuning charge-transfer enabled multifunctionality. Herein, we show that the charge-transfer interactions can be controlled by the segregated stack, consisting of polythiophene donor- and fullerene acceptor-based all-conjugated block copolymers. Room temperature magnetic field effects, ferroelectricity, and anisotropic magnetism are observed in charge-transfer crystals, which can be further controlled by photoexcitation and charge doping. Furthermore, the charge-transfer segregated stack crystals demonstrate external stimuli controlled polarization and magnetization, which opens up their multifunctional applications for all-organic multiferroics.

Electronic Supplementary Material

Download File(s)
nr-9-4-925_ESM.pdf (2.1 MB)

References

1

Scott, J. F. Data storage: Multiferroic memories. Nat. Mater. 2007, 6, 256–257.

2

Hur, N.; Park, S.; Sharma, P. A.; Ahn, J. S.; Guha, S.; Cheong, S. W. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 2004, 429, 392–395.

3

Lage, E.; Kirchhof, C.; Hrkac, V.; Kienle, L.; Jahns, R.; Knöchel, R.; Quandt, E.; Meyners, D. Exchange biasing of magnetoelectric composites. Nat. Mater. 2012, 11, 523–529.

4

Cheong, S. W.; Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 2007, 6, 13–20.

5

Wang, Y.; Hu, J. M.; Lin, Y. H.; Nan, C. W. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2010, 2, 61–68.

6

Wu, S. M.; Cybart, S. A.; Yu, P.; Rossell, M. D.; Zhang, J. X.; Ramesh, R.; Dynes, R. C. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 2010, 9, 756–761.

7

Ramesh, R.; Spaldin, N. A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29.

8

Tokura, Y.; Seki, S.; Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 2014, 77, 076501.

9

Yang, Y. R.; Íñiguez, J.; Mao, A. -J.; Bellaiche, L. Prediction of a novel magnetoelectric switching mechanism in multiferroics. Phys. Rev. Lett. 2014, 112, 057202.

10

Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Magnetic control of ferroelectric polarization. Nature 2003, 426, 55–58.

11

Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.

12

Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; Gajek, M.; Han, S. J.; He, Q.; Balke, N.; Yang, C. H.; Lee, D.; Hu, W. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 2008, 7, 478–482.

13

Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. -W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 2009, 324, 63–66.

14

Ren, S. Q.; Wuttig, M. Organic exciton multiferroics. Adv. Mater. 2012, 24, 724–727.

15

Lohrman, J.; Liu, Y. Y.; Duan, S. F.; Zhao, X. Y.; Wuttig, M.; Ren, S. Q. All conjugated copolymer excitonic multiferroics. Adv. Mater. 2013, 25, 783–787.

16

Qin, W.; Jasion, D.; Chen, X. M.; Wuttig, M.; Ren, S. Q. Charge-transfer magnetoelectrics of polymeric multiferroics. ACS Nano 2014, 8, 3671–3677.

17

Qin, W.; Gong, M. G.; Chen, X. M.; Shastry, T. A.; Sakidja, R.; Yuan, G. L.; Hersam, M. C.; Wuttig, M.; Ren, S. Q. Multiferroicity of carbon-based charge-transfer magnets. Adv. Mater. 2015, 27, 734–739.

18

Kagawa, F.; Horiuchi, S.; Tokunaga, M.; Fujioka, J.; Tokura, Y. Ferroelectricity in a one-dimensional organic quantum magnet. Nat. Phys. 2010, 6, 169–172.

19

Lunkenheimer, P.; Müller, J.; Krohns, S.; Schrettle, F.; Loidl, A.; Hartmann, B.; Rommel, R.; de Souza, M.; Hotta, C.; Schlueter, J. A. et al. Multiferroicity in an organic charge- transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 2012, 11, 755–758.

20

Tayi, A. S.; Shveyd, A. K.; Sue, A. C. H.; Szarko, J. M.; Rolczynski, B. S.; Cao, D.; Kennedy, T. J.; Sarjeant, A. A.; Stern, C. L.; Paxton, W. F. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 2012, 488, 485–489.

21

Sivula, K.; Ball, Z. T.; Watanabe, N.; Fréchet, J. M. J. Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: Fullerene solar cells. Adv. Mater. 2006, 18, 206–210.

22

Chan, S. -H.; Lai, C. -S.; Chen, H. -L.; Ting, C.; Chen, C. -P. Highly efficient P3HT: C60 solar cell free of annealing process. Macromolecules 2011, 44, 8886–8891.

23

Qin, W.; Lohrman, J.; Ren, S. Q. Magnetic and optoelectronic properties of gold nanocluster–thiophene assembly. Angew. Chem., Int. Ed. 2014, 53, 7316–7319.

24

Qin, W.; Chen, X. M.; Li, H. S.; Gong, M. G.; Yuan, G. L.; Grossman, J. C.; Wuttig, M.; Ren, S. Q. Room temperature multiferroicity of charge transfer crystals. ACS Nano 2015, 9, 9373–9379.

25

Hu, B.; Wu, Y. Tuning magnetoresistance between positive and negative values in organic semiconductors. Nat. Mater. 2007, 6, 985–991.

26

Qin, W.; Gao, K.; Yin, S.; Xie, S. J. Investigating the magnetic field effect on electron-hole pair in organic semiconductor devices. J. Appl. Phys. 2013, 113, 193901.

27

Janssen, P.; Cox, M.; Wouters, S. H. W.; Kemerink, M.; Wienk, M. M.; Koopmans, B. Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways. Nat. Commun. 2013, 4, 2286.

28

Majumdar, S.; Majumdar, H. S.; Aarnio, H.; Vanderzande, D.; Laiho, R.; Österbacka, R. Role of electron–hole pair formation in organic magnetoresistance. Phys. Rev. B 2009, 79, 201202.

29

Qin, W.; Gong, M. G.; Shastry, T.; Hersam, M.; Ren, S. Q. Charge-transfer induced magnetic field effects of nano-carbon heterojunctions. Sci. Rep. 2014, 4, 6126.

30

Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151–154.

31

Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860.

32

Österbacka, R.; An, C. P.; Jiang, X. M.; Vardeny, Z. V. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 2000, 287, 839–842.

33

Meng, Y.; Liu, X. J.; Di, B.; An, Z. Recombination of polaron and exciton in conjugated polymers. J. Chem. Phys. 2009, 131, 244502.

34

Sun, Z.; Liu, D. S.; Stafström, S.; An, Z. Scattering process between polaron and exciton in conjugated polymers. J. Chem. Phys. 2011, 134, 044906.

35

Desai, P.; Shakya, P.; Kreouzis, T.; Gillin, W. P.; Morley, N. A.; Gibbs, M. R. J. Magnetoresistance and efficiency measurements of Alq3-based OLEDs. Phys. Rev. B 2007, 75, 094423.

36

Sclar, N. Neutral impurity scattering in semiconductors. Phys. Rev. 1956, 104, 1559–1561.

37

Miller, N. C.; Sweetnam, S.; Hoke, E. T.; Gysel, R.; Miller, C. E.; Bartelt, J. A.; Xie, X. X.; Toney, M. F.; McGehee, M. D. Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene. Nano Lett. 2012, 12, 1566–1570.

38

Zang, H. D.; Liang, Y. Y.; Yu, L. P.; Hu, B. Intra-molecular donor–acceptor interaction effects on charge dissociation, charge transport, and charge collection in bulk-heterojunction organic solar cells. Adv. Energy Mater. 2011, 1, 923–929.

39

Wang, F. J.; Bässler, H.; Valy Vardeny, Z. Magnetic field effects in π-conjugated polymer-fullerene blends: Evidence for multiple components. Phys. Rev. Lett. 2008, 101, 236805.

40

Lee, T. -H.; Guo, T. -F.; Huang, J. C. A.; Wen, T. -C. Modulations of photoinduced magnetoconductance for polymer diodes. Appl. Phys. Lett. 2008, 92, 153303.

41

Armstrong, J. N.; Hua, S. Z.; Chopra, H. D. Anisotropic Curie temperature materials. Phys. Status Solidi B 2013, 250, 387–395.

42

Callen, E. R. Anisotropic magnetization. J. Appl. Phys. 1960, 31, S149–S150.

43

Wagemans, W.; Schellekens, A. J.; Kemper, M.; Bloom, F. L.; Bobbert, P. A.; Koopmans, B. Spin-spin interactions in organic magnetoresistance probed by angle-dependent measurements. Phys. Rev. Lett. 2011, 106, 196802.

Nano Research
Pages 925-932
Cite this article:
Qin W, Chen X, Lohrman J, et al. External stimuli controlled multiferroic charge-transfer crystals. Nano Research, 2016, 9(4): 925-932. https://doi.org/10.1007/s12274-015-0975-8

722

Views

13

Crossref

N/A

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 03 October 2015
Revised: 09 December 2015
Accepted: 11 December 2015
Published: 19 January 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return