Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this article, we report a facile precursor pyrolysis method to prepare porous spinel-type cobalt manganese oxides (CoxMn3-xO4) with controllable morphologies and crystalline structures. The capping agent in the reaction was found to be crucial on the formation of the porous spinel cobalt manganese oxides from cubic Co2MnO4 nanorods to tetragonal Co2Mn4 microspheres and tetragonal Co2Mn4 cubes, respectively. All of the prepared spinel materials exhibit brilliant oxygen reduction reaction (ORR) electrocatalysis along with high stability. In particular, the cubic Co2MnO4 nanorods show the best performance with an onset potential of 0.9 V and a half-wave potential of 0.72 V which are very close to the commercial Pt/C. Meanwhile, the cubic Co2MnO4 nanorods present superior stability with negligible degradation of their electrocatalytic activity after a continuous operation time of 10, 000 seconds, which is much better than the commercial Pt/C electrocatalyst.
Yamasaki, Y.; Miyasaka, S.; Kaneko, Y.; He, J. P.; Arima, T.; Tokura, Y. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 2006, 96, 207204.
Hong, J. F.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gösele, U. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat. Mater. 2006, 5, 627–631.
Habjanic, J.; Juric, M.; Popovic, J.; Molcanov, K.; Pajic, D. A 3D oxalate-based network as a precursor for the CoMn2O4 spinel: Synthesis and structural and magnetic studies. Inorg. Chem. 2014, 53, 9633–9643.
Song, Q.; Zhang, Z. J. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 2004, 126, 6164–6168.
Song, Q.; Zhang, Z. J. Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J. Am. Chem. Soc. 2012, 134, 10182–10190.
Chasserio, N.; Durand, B.; Guillemet, S.; Rousset, A. Mixed manganese spinel oxides: Optical properties in the infrared range. J. Mater. Sci. 2007, 42, 794–800.
Vignesh, R. H.; Sankar, K. V.; Amaresh, S.; Lee, Y. S.; Selvan, R. K. Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor. Sensor. Actuat. B-Chem. 2015, 220, 50–58.
Lavela, P.; Tirado, J. L.; Vidal-Abarca, C. Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochim. Acta 2007, 52, 7986–7995.
Li, F.; Li, G.; Chen, H.; Jia, J. Q.; Dong, F.; Hu, Y. B.; Shang, Z. G.; Zhang, Y. X. Morphology and crystallinitycontrolled synthesis of manganese cobalt oxide/manganese dioxides hierarchical nanostructures for high-performance supercapacitors. J. Power Sources 2015, 296, 86–91.
Peng, S. J.; Li, L. L.; Hu, Y. X.; Srinivasan, M.; Cheng, F. Y.; Chen, J.; Ramakrishna, S. Fabrication of spinel onedimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015, 9, 1945–1954.
Wu, F.; Li, N.; Su, Y. F.; Zhan, L. J.; Bao, L. Y.; Wang, J.; Chen, L.; Zheng, Y.; Dai, L. Q.; Peng, J. Y. et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett. 2014, 14, 3550–3555.
Rios, E.; Gautier, J. L.; Poillerat, G.; Chartier, P. Mixed valency spinel oxides of transition metals and electrocatalysis: Case of the MnxCo3-x O4 system. Electrochim. Acta 1998, 44, 1491–1497.
Robinson, D. M.; Go, Y. B.; Greenblatt, M.; Dismukes, G. C. Water oxidation by λ-MnO2: Catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J. Am. Chem. Soc. 2010, 132, 11467–11469.
Yang, J. G.; Han, X. P.; Zhang, X. L.; Cheng, F. Y.; Chen, J. Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
Gewirth, A. A.; Thorum, M. S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 2010, 49, 3557–3566.
Cao, X. C.; Wu, J.; Jin, C.; Tian, J. H.; Strasser, P.; Yang, R. Z. MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 2015, 5, 4890–4896.
Ge, X. M.; Liu, Y. Y.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Xiao, P.; Zhang, Z.; Lim, S. H.; Li, B.; Wang, X. et al. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl. Mater. Interface 2014, 6, 12684–12691.
Zhu, H. Y.; Zhang, S.; Huang, Y. X.; Wu, L. H.; Sun, S. H. Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett. 2013, 13, 2947–2951.
Diodati, S.; Pandolfo, L.; Caneschi, A.; Gialanella, S.; Gross, S. Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res. 2014, 7, 1027–1042.
Ríos, E.; Abarca, S.; Daccarett, P.; Cong, H. N.; Martel, D.; Marco, J. F.; Gancedo, J. R.; Gautier, J. L. Electrocatalysis of oxygen reduction on CuxMn3-x O4 (1.0 ≤ x ≤ 1.4) spinel particles/polypyrrole composite electrodes. Int. J. Hydrogen Energy 2008, 33, 4945–4954.
Pu, Z. H.; Liu, Q.; Tang, C.; Asiri, A. M.; Qusti, A. H.; Al- Youbi, A. O.; Sun, X. P. Spinel ZnCo2O4/N-doped carbon nanotube composite: A high active oxygen reduction reaction electrocatalyst. J. Power Sources 2014, 257, 170–173.
Bo, X. J.; Zhang, Y. F.; Li, M.; Nsabimana, A.; Guo, L. P. NiCo2O4 spinel/ordered mesoporous carbons as noble-metal free electrocatalysts for oxygen reduction reaction and the influence of structure of catalyst support on the electrochemical activity of NiCo2O4. J. Power Sources 2015, 288, 1–8.
Sugawara, M.; Ohno, M.; Matsuki, K. Oxygen reduction catalysis of Mn–Co spinel oxides on a graphite electrode in alkaline solution. J. Mater. Chem. 1997, 7, 833–836.
Wang, D. D.; Chen, X.; Evans, D. G.; Yang, W. S. Welldispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Nanoscale 2013, 5, 5312–5315.
Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganesecobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.
Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.
Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.
Cheng, F. Y.; Shen, J. A.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 2011, 3, 79–84.
Zhang, W.; Wu, Z. Y.; Jiang, H. L.; Yu, S. H. Nanowiredirected templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 2014, 136, 14385–14388.
Zhou, M.; Yang, C. Z.; Chan, K. Y. Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction. Adv. Energy Mater. 2014, 4, 1400840.
Zhang, Y. J.; Gong, Q. F.; Li, L.; Yang, H. C.; Li, Y. G.; Wang, Q. B. MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res. 2015, 8, 1108–1115.
Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.
Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.
Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Lett. 2015, 15, 7616–7620.
Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J. Carbonsupported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism. J. Phys. Chem. C 2007, 111, 1434–1443.