Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Utilizing a nanogenerator to scavenge mechanical energy from our living environment is an effective method to solve the power source issue of portable electronics. We report a linear-grating hybridized electromagnetic-triboelectric nanogenerator for scavenging the mechanical energy generated from sliding motions to sustainably power certain portable electronics. The hybridized nanogenerator consists of a slider and a stator in the structural design, and possesses a 66-segment triboelectric nanogenerator (TENG) and a 9-segment electromagnetic generator (EMG) in the functional design. At a sliding acceleration of 20 m/s2, the hybridized nanogenerator can deliver maximum powers of 102.8 mW for the TENG at a loading resistance of 0.4 MΩ and 103.3 mW for the EMG at a loading resistance of 6 kΩ. With an optimal hybridized combination of the TENG with a transformer and the EMG with a power management circuit, a 10 mF capacitor can be easily charged to 2.8 V in 20 s. A packaged hybridized nanogenerator with a light weight of 140 g and small dimensions of 12 cm × 4 cm × 1.6 cm excels in scavenging low-frequency sliding energy to sustainably power portable electronics.
Kuo, A. D. Harvesting energy by improving the economy of human walking. Science 2005, 309, 1686–1687.
Cima, M. J. Next-generation wearable electronics. Nat. Biotechnol. 2014, 32, 642–643.
Chun, J. S.; Kang, N. -R.; Kim, J. -Y.; Noh, M. -S.; Kang, C. -Y.; Choi, D.; Kim, S. -W.; Wang, Z. L.; Baik, J. M. Highly anisotropic power generation in piezoelectric hemispheres composed stretchable composite film for self-powered motion sensor. Nano Energy 2015, 11, 1–10.
Jung, W. -S.; Lee, M. -J.; Kang, M. -G.; Moon, H. G.; Yoon, S. -J.; Baek, S. -H.; Kang, C. -Y. Powerful curved piezoelectric generator for wearable applications. Nano Energy 2015, 13, 174–181.
Rome, L. C.; Flynn, L.; Goldman, E. M.; Yoo, T. D. Generating electricity while walking with loads. Science 2005, 309, 1725–1728.
Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807–810.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self- powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184–17189.
Yang, Y.; Wang, Z. L. Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy 2015, 14, 245–256.
Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3691.
Hu, Y. F.; Yang, J.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. ACS Nano 2014, 8, 7442–7450.
Zhang, K. W.; Wang, X.; Yang, Y.; Wang, Z. L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 2015, 9, 3521–3529.
Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.