AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation

Lixiong Li1,2Shuangshuang Huang1,2Jianjun Song1,2Nating Yang1,2Jingwei Liu1Yuyun Chen1Yuhan Sun1,3( )Rongchao Jin4Yan Zhu1,3( )
CAS Key Laboratory of Low-Carbon Conversion Science and EngineeringShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
University of Chinese Academy of SciencesBeijing100049China
School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
Department of ChemistryCarnegie Mellon UniversityPittsburghPA15213USA
Show Author Information

Graphical Abstract

Abstract

Ultrasmall Au10 clusters have a unique electronic structure and can act as a charge reservoir to donate electrons or accept charges. This is particularly important for catalysis, since it leads to facile charge transfer across the interface between the gold species and the oxide substrate. To determine the electronic and structural effects of Au10 on the catalytic oxidation, a TiO2 charge carrier was chosen as the substrate to anchor Au10 for olefin oxidation. Au10 supported on TiO2-RP (RP = pyramid-capped columnar structure) exhibited superior catalytic activity to Au10/TiO2 nanotubes and Au10/P25. In addition, the supported Au10 clusters gave rise to higher activity than supported Au20, Au144 clusters, and 5 nm Au nanocrystals. The superior catalytic ability of Au10/TiO2-RP arises from the charge/discharge effect of the Au10/TiO2-RP interface, which effectively improves the formation of active oxygen species on electron-rich gold atoms at the terminal position of Au10, and promotes the activation of olefin C=C bonds on the electron-deficient gold atoms of Au10.

Electronic Supplementary Material

Download File(s)
nr-9-4-1182_ESM.pdf (1.7 MB)

References

1

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

2

Hutchings, G. Catalysis: A golden future. Gold Bull. 1996, 29, 123–130.

3

Cai, J. Y.; Ma, H.; Zhang, J. J.; Song, Q.; Du, Z. T.; Huang, Y. Z.; Xu, J. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions. Chem.Eur. J. 2013, 19, 14215–14223.

4

Chong, H. B.; Li, P.; Wang, S. X.; Fu, F. Y.; Xiang, J.; Zhu, M. Z.; Li, Y. D. Au25 clusters as electron-transfer catalysts induced the intramolecular cascade reaction of 2-nitrobenzonitrile. Sci. Rep. 2013, 3, 3214.

5

Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N.; Jin, R. C. Structure determination of[Au18(SR)14]. Angew. Chem., Int. Ed. 2015, 54, 3140–3144.

6

Redel, E.; Walter, M.; Thomann, R.; Vollmer, C.; Hussein, L.; Scherer, H.; Krüger, M.; Janiak, C. Synthesis, stabilization, functionalization and, DFT calculations of gold nanoparticles in fluorous phases (PTFE and ionic liquids). Chem. —Eur. J. 2009, 15, 10047–10059.

7

Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.

8

Chen, S.; Wang, S. X.; Zhong, J.; Song, Y. B.; Zhang, J.; Sheng, H. T.; Pei, Y.; Zhu, M. Z. The structure and optical properties of the[Au18(SR)14] nanocluster. Angew. Chem., Int. Ed. 2015, 54, 3145–3149.

9

Jin, R. C.; Zhu, Y.; Qian, H. F. Quantum-sized gold nanoclusters: Bridging the gap between organometallics and nanocrystals. Chem. —Eur. J. 2011, 17, 6584–6593.

10

Huang, P.; Chen, G. X.; Jiang, Z.; Jin, R. C.; Zhu, Y.; Sun, Y. H. Atomically precise Au25 superatoms immobilized on CeO2 nanorods for styrene oxidation. Nanoscale 2013, 5, 3668–3672.

11

Tsunoyama, H.; Liu, Y. M.; Akita, T.; Ichikuni, N.; Sakurai, H.; Xie, S. H.; Tsukuda, T. Size-controlled synthesis of gold clusters as efficient catalysts for aerobic oxidation. Catal. Surv. Asia 2011, 15, 230–239.

12

Zhu, Y.; Qian, H. F.; Jin, R. C. Catalysis opportunities of atomically precise gold nanoclusters. J. Mater. Chem. 2011, 21, 6793–6799.

13

Zhu, Y.; Qian, H. F.; Jin, R. C. An atomic-level strategy for unraveling gold nanocatalysis from the perspective of Aun(SR)m nanoclusters. Chem.Eur. J. 2010, 16, 11455– 11462.

14

Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res 2013, 46, 1749–1758.

15

Kumara, C.; Zuo, X. B.; Ilavsky, J.; Chapman, K. W.; Cullen, D. A.; Dass, A. Super-stable, highly monodisperse plasmonic faradaurate-500 nanocrystals with 500 gold atoms: Au∼500(SR)∼120. J. Am. Chem. Soc. 2014, 136, 7410–7417.

16

Azubel, M.; Koivisto, J.; Malola, S.; Bushnell, D.; Hura, G. L.; Koh, A. L.; Tsunoyama, H.; Tsukuda, T.; Pettersson, M.; Häkkinen, H. et al. Electron microscopy of gold nanoparticles at atomic resolution. Science 2014, 345, 909–912.

17

Yoon, B.; Häkkinen, H.; Landman, U.; Wörz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005, 307, 403–409.

18

Nie, X. T.; Zeng, C. J.; Ma, X. G.; Qian, H. F.; Ge, Q. J.; Xu, H. Y.; Jin, R. C. CeO2-supported Au38(SR)24 nanocluster catalysts for CO oxidation: A comparison of ligand-on and -off catalysts. Nanoscale 2013, 5, 5912–5918.

19

Jin, R. X.; Liu, C.; Zhao, S.; Das, A.; Xing, H. Z.; Gayathri, C.; Xing, Y.; Rosi, N. L.; Gil, R. R.; Jin, R. C. Tri-icosahedral gold nanocluster[Au37(PPh3)10(SC2H4Ph)10X2]+: Linear assembly of icosahedral building blocks. ACS Nano 2015, 9, 8530–8536.

20

Liu, Y. M.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem. Commun. 2010, 46, 550–552.

21

Zhu, Y.; Qian, H. F.; Zhu, M. Z.; Jin, R. C. Thiolate-protected Aun nanoclusters as catalysts for selective oxidation and hydrogenation processes. Adv. Mater. 2010, 22, 1915–1920.

22

Liu, Y. M.; Tsunoyama, H.; Akita, T.; Xie, S. H.; Tsukuda, T. Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: Size effect in the sub-2 nm regime. ACS Catal. 2011, 1, 2–6.

23

Zhu, Y.; Wu, Z. K.; Gayathri, C.; Qian, H. F.; Gil, R. R.; Jin, R. C. Exploring stereoselectivity of Au25 nanoparticle catalyst for hydrogenation of cyclic ketone. J. Catal. 2010, 271, 155–160.

24

Zhu, Y.; Qian, H. F.; Drake, B. A.; Jin, R. C. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α, β-unsaturated ketones and aldehydes. Angew. Chem., Int. Ed. 2010, 49, 1295–1298.

25

Fierro-Gonzalez, J. C.; Gates, B. C. Catalysis by gold dispersed on supports: The importance of cationic gold. Chem. Soc. Rev. 2008, 37, 2127–2134.

26

Chen, M. S.; Goodman, D. W. Catalytically active gold on ordered titania supports. Chem. Soc. Rev. 2008, 37, 1860–1870.

27

Boccuzzi, F.; Chiorino, A. Ftir study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers. J. Phys. Chem. B 2000, 104, 5414–5416.

28

Wang, Y. -G.; Yoon, Y.; Glezakou, V. -A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.

29

Liu, L. M.; McAllister, B.; Ye, H. Q.; Hu, P. Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): A density functional theory study on the intrinsic role of water. J. Am. Chem. Soc. 2006, 128, 4017–4022.

30

Janssens, T. V. W.; Clausen, B. S.; Hvolbæk, B.; Falsig, H.; Christensen, C. H.; Bligaard, T.; Nørskov, J. K. Insights into the reactivity of supported Au nanoparticles: Combining theory and experiments. Top. Catal. 2007, 44, 15–26.

31

Chen, M. S.; Cai, Y.; Yan, Z.; Goodman, D. W. On the origin of the unique properties of supported Au nanoparticles. J. Am. Chem. Soc. 2006, 128, 6341–6346.

32

Zhang, C. J.; Michaelides, A.; King, D. A.; Jenkins, S. J. Positive charge states and possible polymorphism of gold nanoclusters on reduced ceria. J. Am. Chem. Soc. 2010, 132, 2175–2182.

33

Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. Structures of small gold cluster cations (Aun+, n < 14): Ion mobility measurements versus density functional calculations. J. Chem. Phys. 2002, 116, 4094–4101.

34

Yang, X.; Shi, M. M.; Zhou, R. J.; Chen, X. Q.; Chen, H. Z. Blending of HAuCl4 and histidine in aqueous solution: A simple approach to the Au10 cluster. Nanoscale 2011, 3, 2596–2601.

35

Häkkinen, H.; Landman, U. Gold clusters (AuN, 2 ≤ N ≤10) and their anions. Phys. Rev. B 2000, 62, R2287–R2290.

36

Han, Z.; Zhang, D. J.; Liu, C. B. A theoretical study on the geometrical structure and electronic properties of Au10 cluster. Acta Chim. Sinica 2009, 67, 387–391.

37

Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(Ⅲ)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 6223–6226.

38

Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 2002, 26, 1167–1170.

39

Bae, E.; Murakami, N.; Ohno, T. Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions. J. Mol. Catal. A-Chem. 2009, 300, 72–79.

40

Wang, D. M.; Zhang, Y.; Zheng, L. L.; Yang, X. X.; Wang, Y.; Huang, C. Z. Singlet oxygen involved luminol chemiluminescence catalyzed by graphene oxide. J. Phys. Chem. C 2012, 116, 21622–21628.

41

Ledenev, A. N.; Konstantinov, A. A.; Popova, E.; Ruuge, E. K. A simple assay of the superoxide generation rate with Tiron as an EPR-visible radical scavenger. Biochem. Int. 1986, 13, 391–396.

42

Sueishi, Y.; Miyazono, K.; Kozai, K. Effects of substituent and external pressure on spin trapping rates of carbon dioxide anion, sulfur trioxide anion, hydroxyl, and ethyl radicals with various pbn- and dmpo-type spin traps. Z. Phys. Chem. 2014, 228, 927–938.

43

Aikens, C. M. Origin of discrete optical absorption spectra of M25(SH)18-nanoparticles (M = Au, Ag). J. Phys. Chem. C 2008, 112, 19797–19800.

44

Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA 2008, 105, 9157–9162.

45

Suriye, K.; Praserthdam, P.; Jongsomjit, B. Impact of Ti3+ present in titania on characteristics and catalytic properties of the CO/TiO2 catalyst. Ind. Eng. Chem. Res. 2005, 44, 6599–6604.

46

Iyengar, R. D.; Codell, M. TiO2 and ZnO surface studies by electron spin resonance spectroscopy. Adv. Colloid Interface Sci. 1972, 3, 365–388.

Nano Research
Pages 1182-1192
Cite this article:
Li L, Huang S, Song J, et al. Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Research, 2016, 9(4): 1182-1192. https://doi.org/10.1007/s12274-016-1012-2

636

Views

13

Crossref

N/A

Web of Science

13

Scopus

3

CSCD

Altmetrics

Received: 14 October 2015
Revised: 19 December 2015
Accepted: 08 January 2016
Published: 11 March 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return