AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable synthesis of triangular Ni(HCO3)2 nanosheets for supercapacitor

Xiaoxian ZangZiyang DaiJing GuoQiuchun DongJun YangWei Huang( )Xiaochen Dong( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)Nanjing211816China
Show Author Information

Graphical Abstract

Abstract

Triangular Ni(HCO3)2 nanosheets were synthesized via a template-free solvothermal method. The phase transition and formation mechanism were explored systematically. Further investigation indicated that the reaction time and pH have significant effects on the morphology and size distribution of the triangular Ni(HCO3)2 nanosheets. More interestingly, the resulting product had an ultra-thin structure and high specific surface area, which can effectively accelerate the charge transport during charge-discharge processes. As a result, the triangular Ni(HCO3)2 nanosheets not only exhibited high specific capacitance (1, 797 F·g-1 at 5 A·g-1 and 1, 060 F·g-1 at 50 A·g-1), but also showed excellent cycling stability with a high current density (~80% capacitance retention after 5, 000 cycles at the current density of 20 A·g-1).

Electronic Supplementary Material

Download File(s)
nr-9-5-1358_ESM.pdf (1.7 MB)

References

1

Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697-1721.

2

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.

3

Balasingam, S. K.; Lee, J. S.; Jun, Y. Few-layered MoSe2 nanosheets as an advanced electrode material for super capacitors. Dalton Trans. 2015, 44, 15491-15498.

4

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

5

Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65-76.

6

Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electro chemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472-7477.

7

Yan, J.; Fan, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632-2641.

8

Feng, G.; Kuang, Y.; Li, Y. J.; Sun, X. M. Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation. Nano Res. 2015, 8, 3365-3371.

9

Huang, M. L.; Gu, C. D.; Ge, X.; Wang, X. L.; Tu, J. P. NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. J. Power Sources 2014, 259, 98-105.

10

Bai, Y.; Du, M.; Chang, J.; Sun, J.; Gao, L. Supercapacitors with high capacitance based on reduced graphene oxide/ carbon nanotubes/NiO composite electrodes. J. Mater. Chem. A 2014, 2, 3834-3840.

11

Yang, J. Q.; Duan, X. C.; Qin, Q.; Zheng, W. J. Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J. Mater. Chem. A 2013, 1, 7880-7884.

12

Yang, J. Q.; Duan, X. C.; Guo, W.; Li, D.; Zhang, H. L.; Zheng, W. J. Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 2014, 5, 74-81.

13

Wang, D.; Kong, L. -B.; Liu, M. -C.; Zhang, W. -B.; Luo, Y. -C.; Kang, L. Amorphous Ni-P materials for high performance pseudocapacitors. J. Power Sources 2015, 274, 1107-1113.

14

Du, W. M.; Wei, S. H.; Zhou, K. K.; Guo, J. J.; Pang, H.; Qian, X. F. One-step synthesis and graphene-modification to achieve nickel phosphide nanoparticles with electrochemical properties suitable for supercapacitors. Mater. Res. Bull. 2015, 61, 333-339.

15

Zhang, J. T.; Liu, S.; Pan, G. L.; Li, G. R.; Gao, X. P. A 3D hierarchical porous α-Ni(OH)2/graphite nanosheet composite as an electrode material for supercapacitors. J. Mater. Chem. A 2014, 2, 1524-1529.

16

Yang, M. Y.; Cheng, H.; Gu, Y. Y.; Sun, Z. F.; Hu, J.; Cao, L. J.; Lv, F. C.; Li, M. C.; Wang, W. X.; Wang, Z. Y. et al. Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors. Nano Res. 2015, 8, 2744-2754.

17

Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303-3323.

18

Sun, J. F.; Li, Z. P.; Wang, J. Q.; Wang, Z. F.; Niu, L. Y.; Gong, P. W.; Liu, X. H.; Wang, H. G.; Yang, S. R. Solvothermal synthesis of Ni(HCO3)2/graphene composites toward supercapacitors and the faradiac redox mechanism in KOH solution. J. Alloy. Compd. 2013, 581, 217-222.

19

Wu, M. S.; Lin, Y. P.; Lin, C. H.; Lee, J. T. Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors. J. Mater. Chem. 2012, 22, 2442-2448.

20

Zhu, X. J.; Dai, H. L.; Hu, J.; Ding, L.; Jiang, L. Reduced graphene oxide-nickel oxide composite as high performance electrode materials for supercapacitors. J. Power Sources 2012, 203, 243-249.

21

Yan, Y. N.; Cheng, G.; Wang, P.; He, D. N.; Chen, R. Facile hydrothermal selective fabrication of Ni(OH)2 and Ni(HCO3)2 nanoparticulates and their electrochemical performances. RSC Adv. 2014, 4, 49303-49307.

22

Yang, S. B.; Wu, X. L.; Chen, C. L.; Dong, H. L.; Hu, W. P.; Wang, X. K. Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem. Commun. 2012, 48, 2773-2775.

23

Chen, X.; Long, C. L.; Lin, C. P.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Al and Co co-doped α-Ni(OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochim. Acta 2014, 137, 352-358.

24

Wu, X.; Pang, X. Y.; An, X.; Xie, X. M. Kinetics and mechanism of formation of benzoin ethyl ether from benzaldehyde and ethanol using heterogeneous Ni(HCO3)2 as catalyst. Prog. React. Kinet. Mec. 2014, 39, 299-307.

25

Wu, X.; An, X.; Xie, X. -M. Preparation of Ni(HCO3)2 and its catalytic performance in synthesis of benzoin ethyl ether. Trans. Nonferrous Met. Soc. China 2014, 24, 1440-1445.

26

Yan, J.; Sun, W.; Wei, T.; Zhang, Q.; Fan, Z. J.; Wei, F. Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 2012, 22, 11494-11502.

27

Sennu, P.; Christy, M.; Aravindan, V.; Lee, Y. G.; Nahm, K. S.; Lee, Y. S. Two-dimensional mesoporous cobalt sulfide nanosheets as a superior anode for a Li-ion battery and a bifunctional electrocatalyst for the Li-O2 system. Chem. Mater. 2015, 27, 5726-5735.

28

Zhou, J.; Huang, Y.; Cao, X. H.; Ouyang, B.; Sun, W. P.; Tan, C. L.; Zhang, Y.; Ma, Q. L.; Liang, S. Q.; Yan, Q. Y.; Zhang, H. Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale 2015, 7, 7035-7039.

29

Hou, L. R.; Yuan, C. Z.; Li, D. K.; Yang, L.; Shen, L. F.; Zhang, F.; Zhang, X. G. Electrochemically induced trans formation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors. Electrochim. Acta 2011, 56, 7454-7459.

30

Xia, Q. X.; San Hui, K.; Hui, K. N.; Kim, S. D.; Lim, J. H.; Choi, S. Y.; Zhang, L. J.; Mane, R. S.; Yun, J. M.; Kim, K. H. Facile synthesis of manganese carbonate quantum dots/ Ni(HCO3)2-MnCO3 composites as advanced cathode materials for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 22102-22117.

31

Huo, H. H.; Zhao, Y. Q.; Xu, C. L. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance super capacitor and non-enzymatic glucose detection. J. Mater. Chem. A 2014, 2, 15111-15117.

32

Lu, Z. Y.; Yang, Q.; Zhu, W.; Chang, Z.; Liu, J. F.; Sun, X. M.; Evans, D. G.; Duan, X. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 2012, 5, 369-378.

33

Chen, W.; Xia, C.; Alshareef, H. N. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 2014, 8, 9531-9541.

34

Min, S. D.; Zhao, C. J.; Chen, G. R.; Qian, X. Z. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim. Acta 2014, 115, 155-164.

35

Niu, L. Y.; Wang, J. Q.; Hong, W.; Sun, J. F.; Fan, Z. J.; Ye, X. Y.; Wang, H. G.; Yang, S. R. Solvothermal synthesis of Ni/reduced graphene oxide composites as electrode material for supercapacitors. Electrochim. Acta 2014, 123, 560-568.

36

Sun, C. C.; Ma, M. Z.; Yang, J.; Zhang, Y. F.; Chen, P.; Huang, W.; Dong, X. C. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci. Rep. 2014, 4, 7054.

Nano Research
Pages 1358-1365
Cite this article:
Zang X, Dai Z, Guo J, et al. Controllable synthesis of triangular Ni(HCO3)2 nanosheets for supercapacitor. Nano Research, 2016, 9(5): 1358-1365. https://doi.org/10.1007/s12274-016-1031-z

658

Views

41

Crossref

N/A

Web of Science

41

Scopus

2

CSCD

Altmetrics

Received: 03 December 2015
Revised: 19 January 2016
Accepted: 25 January 2016
Published: 29 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return