AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metal intercalation-induced selective adatom mass transport on graphene

Xiaojie Liu1Cai-Zhuang Wang2( )Myron Hupalo2Hai-Qing Lin3Kai-Ming Ho2Patricia A. Thiel4Michael C. Tringides2
Center for Quantum Science and School of PhysicsNortheast Normal UniversityChangchun130117China
Ames Laboratory–U.S. Department of Energyand Department of Physics and AstronomyIowa State UniversityAmesIA50011USA
Beijing Computational Science Research CenterBeijing100084China
Ames Laboratory–U.S. Department of EnergyDepartment of Chemistry and Department of Materials Science and EngineeringIowa State UniversityAmesIA50011USA
Show Author Information

Graphical Abstract

Abstract

Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. This alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective mass transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.

References

1

McChesney, J. L.; Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; González, J.; Rotenberg, E. Extended van hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 2010, 104, 136803.

2

Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Atomic hole doping of graphene. Nano Lett. 2008, 8, 4603-4607.

3

Li, Y. C.; Chen, P. C.; Zhou, G.; Li, J.; Wu, J.; Gu, B. -L.; Zhang, S. B.; Duan, W. H. Dirac fermions in strongly bound graphene systems. Phys. Rev. Lett. 2012, 109, 206802.

4

Hupalo, M.; Liu, X. J.; Wang, C. Z.; Lu, W. C.; Yao, Y. X.; Ho, K. M.; Tringides, M. C. Metal nanostructure formation on graphene: Weak versus strong bonding. Adv. Mater. 2011, 23, 2082-2087.

5

Liu, X. J.; Wang, C. Z.; Yao, Y. X.; Lu, W. C.; Hupalo, M.; Tringides, M. C.; Ho, K. M. Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 2011, 83, 235411.

6

Liu, X. J.; Hupalo, M.; Wang, C. Z.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Tringides, M. C. Growth morphology and thermal stability of metal islands on graphene. Phys. Rev. B 2012, 86, 081414(R).

7

Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Tringides, M. C. Fe-Fe adatom interaction and growth morphology on graphene. Phys. Rev. B 2011, 84, 235446.

8

Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lu, W. C.; Tringides, M. C.; Yao, Y. X.; Ho, K. M. Metals on graphene: Correlation between adatom adsorption behavior and growth morphology. Phys. Chem. Chem. Phys. 2012, 14, 9157-9166.

9

Binz, S. M.; Hupalo, M.; Liu, X. J.; Wang, C. Z.; Lu, W. C.; Thiel, P. A.; Ho, K. M.; Conrad, E. H.; Tringides, M. C. High island densities and long range repulsive interactions: Fe on epitaxial graphene. Phys. Rev. Lett. 2012, 109, 026103.

10

Liu, X. J.; Wang, C. Z.; Hupalo, M.; Lin, H. -Q.; Ho, K. M.; Tringides, M. C. Metal on graphene: Interactions, growth morphology, and thermal stability. Crystals 2013, 3, 79-111.

11

Baringhaus, J.; Stöhr, A.; Forti, S.; Krasnikov, S. A.; Zakharov, A. A.; Starke, U.; Tegenkamp, C. Bipolar gating of epitaxial graphene by intercalation of Ge. Appl. Phys. Lett. 2014, 104, 261602.

12

Schumacher, S.; Wehling, T. O.; Lazić, P., Runte, S.; Förster, D. F.; Busse, C., Petrović, M.; Kralj, M.; Blügel, S.; Atodiresei, N. et al. The backside of graphene: Manipulating adsorption by intercalation. Nano Lett. 2013, 13, 5013-5019.

13

Schumacher, S.; Förster, D. F.; Rösner, M.; Wehling, T. O.; Michely, T. Strain in epitaxial graphene visualized by intercalation. Phys. Rev. Lett. 2013, 110, 086111.

14

Petrović, M.; Rakić, Š. I.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazić, P.; Pletikosić, I.; Pan, Z. -H.; Milun, M.; Pervan, P. et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772.

15

Sandin, A.; Jayasekera, T.; Rowe, J. E.; Kim, K. W.; Nardelli, M. B.; Dougherty, D. B. Multiple coexisting intercalation structures of sodium in epitaxial graphene-SiC interfaces. Phys. Rev. B 2012, 85, 125410.

16

Emtsev, K. V.; Zakharov, A. A.; Coletti, C.; Forti, S.; Starke, U. Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation. Phys. Rev. B 2011, 84, 125423.

17

Förster, D. F.; Wehling, T. O.; Schumacher, S.; Rosch, A.; Michely, T. Phase coexistence of clusters and islands: Europium on graphene. New J. Phys. 2012, 14, 023022.

18

Song, C. -L.; Sun, B.; Wang, Y. -L.; Jiang, Y. -P.; Wang, L. L.; He, K.; Chen, X.; Zhang, P.; Ma, X. -C.; Xue, Q. -K. Charge-transfer-induced cesium superlattices on graphene. Phys. Rev. Lett. 2012, 108, 156803.

19

Luo, Z. C.; Somers, L. A.; Dan, Y. P.; Ly, T.; Kybert, N. J.; Mele, E. J.; Johnson, A. T. C. Size-selective nanoparticle growth on few-layer graphene films. Nano Lett. 2010, 10, 777-781.

20

Zhou, H. Q.; Qiu, C. Y.; Liu, Z.; Yang, H. C.; Hu, L. J.; Liu, J.; Yang, H. F.; Gu, C. Z.; Sun, L. F. Thickness-dependent morphologies of gold on N-layer graphenes. J. Am. Chem. Soc. 2010, 132, 944-946.

21

Jiang, N.; Zhang, Y. Y.; Liu, Q.; Cheng, Z. H.; Deng, Z. T.; Du, S. X.; Gao, H. -J.; Beck, M. J.; Pantelides, S. T. Diffusivity control in molecule-on-metal systems using electric fields. Nano Lett. 2010, 10, 1184-1188.

22

Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83-115.

23

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

24

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

25

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

26

Perdew, J. P.; Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

27

Makov, G.; Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 1995, 51, 4014-4022.

28

Neugebauer, J.; Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 1992, 46, 16067-16080.

29

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

30

Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

31

Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.

32
The interaction energy between the two adatoms on graphene is defined as Einter(r)=Ea2(r)-2Ea1. Here, Ea2(r) is the adsorption energy of two Eu adatoms on graphene at a separation r, and Ea1 is the adsorption energy of a single Eu adatom. The Ea2(r) and Ea1 are obtained by first-principles DFT calculations using a 10 × 10 graphene supercell with one or two adatoms and periodic boundary conditions. The interaction between Eu-Eu adatoms is attractive at small separations (less than 5.0 Å) but becomes repulsive at the distances larger than 6.0 Åwith maximum repulsion of 0.24 eV.
Nano Research
Pages 1434-1441
Cite this article:
Liu X, Wang C-Z, Hupalo M, et al. Metal intercalation-induced selective adatom mass transport on graphene. Nano Research, 2016, 9(5): 1434-1441. https://doi.org/10.1007/s12274-016-1039-4

685

Views

7

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 25 September 2015
Revised: 27 January 2016
Accepted: 03 February 2016
Published: 29 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return