AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Peptide recognition by functional supramolecular nanopores with complementary size and binding sites

Yumin Chen1( )Hui Nie3Ke Deng2( )Shili Wu2Jindong Xue2Lijin Shu3( )Yue Yu2Yanfang Geng2Ping Li2Yanlian Yang2Qingdao Zeng2( )
State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal UniversityHangzhou310012China
Show Author Information

Graphical Abstract

Abstract

The precise control of the conformations of biomolecules adsorbed on a surface at the single-molecule level is significant. However, it remains a huge challenge because of the complex structure and conformation diversity of biomolecules. Herein, a "nanopore-confined recognition" strategy is proposed to manipulate the adsorption of individual valinomycin molecules at room temperature through precise design of functionalized conjugated macrocycle (CPN8) supramolecular nanopores with complementary architectures and binding sites. We revealed that CPN8 prefers to selectively recognizing valinomycin with complementary architecture because of the strong synergistic interactions between the isopropyl groups of valinomycin and the amino groups of CPN8, with valinomycinhighly oriented pyrolytic graphite (HOPG) interactions. Our perspectives at the single-molecule level will provide valuable insights to improve the design of supramolecular nanopores for conformation-selective recognition of non-conjugated molecules.

Electronic Supplementary Material

Download File(s)
nr-9-5-1452_ESM.pdf (3.4 MB)

References

1

Motiei, L.; Pode, Z.; Koganitsky, A.; Margulies, D. Targeted protein surface sensors as a tool for analyzing small populations of proteins in biological mixtures. Angew. Chem., Int. Ed. 2014, 53, 9289-9293.

2

Tew, G. N.; Scott, R. W.; Klein, M. L.; DeGrado, W. F. De novo design of antimicrobial polymers, foldamers, and small molecules: From discovery to practical applications. Acc. Chem. Res. 2010, 43, 30-39.

3

Foster, T. J.; Geoghegan, J. A.; Ganesh, V. K.; Höök, M. Adhesion, invasion and evasion: The many functions of the surface proteins of staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49-62.

4

Meyers, S. R.; Grinstaff, M. W. Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem. Rev. 2012, 112, 1615-1632.

5

Grafahrend, D.; Heffels, K. H.; Beer, M. V.; Gasteier, P.; Möller, M.; Boehm, G.; Dalton, P. D.; Groll, J. Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat. Mater. 2011, 10, 67-73.

6

Castner, D. G.; Ratner, B. D. Biomedical surface science: Foundations to frontiers. Surf. Sci. 2002, 500, 28-60.

7

Liao, W. S.; Cheunkar, S.; Cao, H. H.; Bednar, H. R.; Weiss, P. S.; Andrews, A. M. Subtractive patterning via chemical lift-off lithography. Science 2012, 337, 1517-1521.

8

MacBeath, G.; Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760-1763.

9

Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A. Supramolecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106-2115.

10

Li, M.; Deng, K.; Lei, S. B.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. Angew. Chem., Int. Ed. 2008, 47, 6717-6721.

11

Lei, S. B.; Surin, M.; Tahara, K.; Adisoejoso, J.; Lazzaroni, R.; Tobe, Y.; De Feyter, S. Programmable hierarchical three-component 2D assembly at a liquid-solid interface: Recognition, selection, and transformation. Nano Lett. 2008, 8, 2541-2546.

12

Slater, A. G.; Perdigao, L. M. A.; Beton, P. H.; Champness, N. R. Surface-based supramolecular chemistry using hydrogen bonds. Acc. Chem. Res. 2014, 47, 3417-3427.

13

Spillmann, H.; Dmitriev, A.; Lin, N.; Messina, P.; Barth, J. V.; Kern, K. Hierarchical assembly of two-dimensional homochiral nanocavity arrays. J. Am. Chem. Soc. 2003, 125, 10725-10728.

14

Tobe, Y.; Utsumi, N.; Kawabata, K.; Nagano, A.; Adachi, K.; Araki, S.; Sonoda, M.; Hirose, K.; Naemura, K. m-diethynylbenzene macrocycles: Syntheses and self-association behavior in solution. J. Am. Chem. Soc. 2002, 124, 5350-5364.

15

Iyoda, M.; Yamakawa, J.; Rahman, M. J. Conjugated macrocycles: Concepts and applications. Angew. Chem., Int. Ed. 2011, 50, 10522-10553.

16

Tobe, Y.; Utsumi, N.; Nagano, A.; Sonoda, M.; Naemura, K. Synthesis of butadiyne-bridged[4n] metacyclophanes having exo-annular t-butyl groups. Tetrahedron 2001, 57, 8075-8083.

17

Schlütter, F.; Rossel, F.; Kivala, M.; Enkelmann, V.; Gisselbrecht, J. P.; Ruffieux, P.; Fasel, R.; Müllen, K. π-conjugated heterotriangulene macrocycles by solution and surface-supported synthesis toward honeycomb networks. J. Am. Chem. Soc. 2013, 135, 4550-4557.

18

Pan, G. B.; Cheng, X. H.; Höger, S.; Freyland, W. 2D supramolecular structures of a shape-persistent macrocycle and co-deposition with fullerene on HOPG. J. Am. Chem. Soc. 2006, 128, 4218-4219.

19

Azov, V. A.; Cordes, J.; Schlüter, D.; Dülcks, T.; Böckmann, M.; Doltsinis, N. L. Light-controlled macrocyclization of tetrathiafulvalene with azobenzene: Designing an optoelectronic molecular switch. J. Org. Chem. 2014, 79, 11714-11721.

20

Geng, Y. F.; Liu, M. Q.; Xue, J. D.; Xu, P.; Wang, Y. F.; Shu, L. J.; Zeng, Q. D.; Wang, C. A template-confined fabrication of controllable gold nanoparticles based on the two-dimensional nanostructure of macrocycles. Chem. Commun. 2015, 51, 6820-6823.

21

Karle, I. L.; Flippen-Anderson, J. L. New conformation exhibiting near-threefold symmetry for uncomplexes valinomycin in crystals from dimethyl sulfoxide. J. Am. Chem. Soc. 1988, 110, 3253-3257.

22

Chen, Y. M.; Deng, K.; Qiu, X. H.; Wang, C. Visualizing cyclic peptide hydration at the single-molecule level. Sci. Rep. 2013, 3, 2461.

23

Becke, A. D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547-2553.

24

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244-13249.

Nano Research
Pages 1452-1459
Cite this article:
Chen Y, Nie H, Deng K, et al. Peptide recognition by functional supramolecular nanopores with complementary size and binding sites. Nano Research, 2016, 9(5): 1452-1459. https://doi.org/10.1007/s12274-016-1041-x

726

Views

8

Crossref

N/A

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 08 December 2015
Revised: 25 January 2016
Accepted: 03 February 2016
Published: 29 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return