Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Sub-micron color sensors are developed, using carbon nanotubes (CNTs). The color sensor consists of an array of two photodiodes with different spectral responses, fabricated using controlled electric peeling-off and doping-free techniques on a single semiconducting double-wall CNT. The CNT photodiodes exhibit intrinsic broad spectral responses from 640 to 2, 100 nm, large linear dynamic ranges of over 60 dB, and sub-micron pixel size. This method explores the unique properties of multi-wall CNTs, and may be readily used for large-scale fabrication of high performance color sensor arrays, when arrays of parallel multi-wall CNTs become available.
Nozaki, H.; Adachi, T. Color sensor. U.S. Patent 4, 677, 289, Jun 30, 1987.
Rutz, F.; Rehm, R.; Wörl, A.; Schmitz, J.; Wauro, M.; Niemasz, J.; Masur, M.; Walther, M.; Scheibner, R.; Ziegler, J. Imaging detection of CO2 using a bispectral type-Ⅱ superlattice infrared camera. In Proceedings of the 11th International Conference on Quantitative InfraRed Thermography, Naples, Italy, 2012, pp 1-7.
Park, H.; Dan, Y. P.; Seo, K.; Yu, Y. J.; Duane, P. K.; Wober, M.; Crozier, K. B. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett. 2014, 14, 1804-1809.
Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136-154.
Theuwissen, A. CMOS image sensors: State-of-the-art and future perspectives. In Proceedings of the 33rd European Solid State Circuits Conference, Munich, Germany, 2007, pp 21-27.
Eid, E. S. Study of limitations on pixel size of very high resolution image sensors. In Proceedings of the 18th National Radio Science Conference, Mansoura, Egypt, 2001, pp 15-28.
Farrell, J.; Xiao, F.; Kavusi, S. Resolution and light sensitivity tradeoff with pixel size. In Proceedings of the SPIE 6169, Digital Photography Ⅱ, San Jose, CA, USA, 2006, pp 60690n-60690n-8.
Baylet, J.; Gravrand, O.; Laffosse, E.; Vergnaud, C.; Ballerand, S.; Aventurier, B.; Deplanche, J. C.; Ballet, P.; Castelein, P.; Chamonal, J. P. et al. Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors. J. Electron. Mater. 2004, 33, 690-700.
Cuche, E.; Bevilacqua, F.; Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999, 24, 291-293.
Yamaguchi, I.; Zhang, T. Phase-shifting digital holography. Opt. Lett. 1997, 22, 1268-1270.
Lai, K. W. C.; Xi, N.; Fung, C. K. M.; Chen, H. Z.; Tarn, T. -J. Engineering the band gap of carbon nanotube for infrared sensors. Appl. Phys. Lett. 2009, 95, 221107.
Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555-2558.
Zhang, R. F.; Ning, Z. Y.; Zhang, Y. Y.; Zheng, Q. S.; Chen, Q.; Xie, H. H.; Zhang, Q.; Qian, W. Z.; Wei, F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912-916.
Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Wang, H. D.; Nie, J. Q.; Wen, Q.; Wei, F. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 2013, 4, 1727.
Wen, Q.; Qian, W. Z.; Nie, J. Q.; Cao, A. Y.; Ning, G. Q.; Wang, Y.; Hu, L.; Zhang, Q.; Huang, J. Q.; Wei, F. 100 mm long, semiconducting triple-walled carbon nanotubes. Adv. Mater. 2010, 22, 1867-1871.
Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on schulz-flory distribution. ACS Nano 2013, 7, 6156-6161.
Wei, N.; Liu, Y.; Xie, H. H.; Wei, F.; Wang, S.; Peng, L. -M. Carbon nanotube light sensors with linear dynamic range of over 120 dB. Appl. Phys. Lett. 2014, 105, 073107.
Yu, D. M.; Wang, S.; Ye, L. H.; Li, W.; Zhang, Z. Y.; Chen, Y. B.; Zhang, J.; Peng, L. -M. Electroluminescence from serpentine carbon nanotube based light-emitting diodes on quartz. Small 2014, 10, 1050-1056.
Liu, Y.; Wei, N.; Zeng, Q. S.; Han, J.; Huang, H. X.; Zhong, D. L.; Wang, F. L.; Ding, L.; Xia, J. Y.; Xu, H. T. et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016, 4, 238-245.
Bourlon, B.; Glattli, D. C.; Plaçais, B.; Berroir, J. M.; Miko, C.; Forró, L.; Bachtold, A. Geometrical dependence of high-bias current in multiwalled carbon nanotubes. Phys. Rev. Lett. 2004, 92, 026804-1-026804-4.
Collins, P. G.; Avouris, P. Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A 2002, 74, 329-332.
Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128-3131.
Tsutsui, M.; Taninouchi, Y. K.; Kurokawa, S.; Sakai, A. Electrical breakdown of short multiwalled carbon nanotubes. J. Appl. Phys. 2006, 100, 094302.
Chiu, H. -Y.; Deshpande, V. V.; Postma, H. W. C.; Lau, C. N.; Mikó, C.; Forró, L.; Bockrath, M. Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys. Rev. Lett. 2005, 95, 226101-1-226101-4.
Brown, E.; Hao, L.; Gallop, J. C.; MacFarlane, J. C. Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Appl. Phys. Lett. 2005, 87, 023107.
Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706-709.
Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 2009, 131, 62-63.
Wang, S.; Liang, X. L.; Chen, Q.; Yao, K.; Peng, L. -M. High-field electrical transport and breakdown behavior of double-walled carbon nanotube field-effect transistors. Carbon 2007, 45, 760-765.
Bouilly, D.; Cabana, J.; Meunier, F.; Desjardins-Carriere, M.; Lapointe, F.; Gagnon, P.; Larouche, F. L.; Adam, E.; Paillet, M.; Martel, R. Wall-selective probing of double-walled carbon nanotubes using covalent functionalization. ACS Nano 2011, 5, 4927-4934.
Moore, K. E.; Pfohl, M.; Tune, D. D.; Hennrich, F.; Dehm, S.; Chakradhanula, V. S. K.; Kübel, C.; Krupke, R.; Flavel, B. S. Sorting of double-walled carbon nanotubes according to their outer wall electronic type via a gel permeation method. ACS Nano 2015, 9, 3849-3857.
Deborde, T.; Aspitarte, L.; Sharf, T.; Kevek, J. W.; Minot, E. D. Determining the chiral index of semiconducting carbon nanotubes using photoconductivity resonances. J. Phys. Chem. C 2014, 118, 9946-9950.
Qiu, X. H.; Freitag, M.; Perebeinos, V.; Avouris, P. Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states. Nano Lett. 2005, 5, 749-752.
Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067-1071.
Liu, K. H.; Jin, C. H.; Hong, X. P.; Kim, J.; Zettl, A.; Wang, E. G.; Wang, F. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat. Phys. 2014, 10, 737-742.
Tang, L.; Kocabas, S. E.; Latif, S.; Okyay, A. L.; Ly-Gagnon, D. S.; Saraswat, K. C.; Miller, D. A. B. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat. Photonics 2008, 2, 226-229.
Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136-154.
Gabor, N. M. Extremely efficient and ultrafast: Electrons, holes, and their interactions in the carbon nanotube PN junction. Ph. D. Dissertation, Cornell University, Ithaca, New York, USA, 2012.
Franklin, A. D. Electronics: The road to carbon nanotube transistors. Nature 2013, 498, 443-444.
Liang, S. B.; Zhang, Z. Y.; Pei, T.; Li, R. M.; Li, Y.; Peng, L. M. Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Res. 2013, 6, 535-545.
Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352-356.