Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Peptide-induced bio-mineralization as a bio-mimetic means of detecting proteins in a mineralizing bio-context

Yuanyuan Zhang1,§Hao Li2,§Yue Huang2Lizhou Sun1()Genxi Li2,3()
Department of Obstetrics and GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210036China
State Key Laboratory of Pharmaceutical BiotechnologyDepartment of BiochemistryNanjing UniversityNanjing210093China
Laboratory of Biosensing TechnologySchool of Life SciencesShanghai UniversityShanghai200444China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Pathological bio-mineralization can be induced by diseases such as preeclampsia. Inspired by these naturally occurring bio-mineralization processes, we have designed a process called protein-controlled peptide assembly tandem peptide-templated bio-mineralization. The technique provides bio-context-associated data on the activity of target proteins, and facilitates the evaluation of protein function in the associated biological microenvironment. It is a bio-mimetic process that leads to the formation of Ag nanoparticle-decorated peptide nanowires, which can offer efficient signal amplification with high sensitivity for biosensing applications. Consequently, high-temperature requirement factor A1 (HtrA1) can be assayed quantitatively in clinical serum samples to offer information for the diagnosis of preeclampsia and the improved treatment of the disease. The results suggest that the process has considerable potential for use in clinical practice.

Electronic Supplementary Material

Download File(s)
nr-9-5-1489_ESM.pdf (2.4 MB)

References

1

Jiang, Q.; Shi, Y. F.; Zhang, Q.; Li, N.; Zhan, P. F.; Song, L. L.; Dai, L. R.; Tian, J.; Du, Y.; Cheng, Z. et al. A self-assembled DNA origami-gold nanorod complex for cancer theranostics. Small 2015, 11, 5134-5141.

2

Mei, Q.; Johnson, R. H.; Wei, X. X.; Su, F. Y.; Liu, Y.; Kelbauskas, L.; Lindsay, S.; Meldrum, D. R.; Yan, H. On-chip isotachophoresis separation of functional DNA origami capture nanoarrays from cell lysate. Nano Res. 2013, 6, 712-719.

3

Lin, M. H.; Wang, J. J.; Zhou, G. B.; Wang, J. B.; Wu, N.; Lu, J. X.; Gao, J. M.; Chen, X. Q.; Shi, J. Y.; Zuo, X. L. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem., Int. Ed. 2015, 54, 2151-2155.

4

Chen, W. H.; Lei, Q.; Yang, C. X.; Jia, H. Z.; Luo, G. F.; Wang, X. Y.; Liu, G.; Cheng, S. X.; Zhang, X. Z. Bioinspired nano-prodrug with enhanced tumor targeting and increased therapeutic efficiency. Small 2015, 11, 5230-5242.

5

Yang, B.; Dong, X.; Lei, Q.; Zhuo, R. X.; Feng, J.; Zhang, X. Z. Host-guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs. ACS Appl. Mater. Interfaces 2015, 7, 22084-22094.

6

Oliva, N.; Unterman, S.; Zhang, Y.; Conde, J.; Song, H. S.; Artzi, N. Personalizing biomaterials for precision nanomedicine considering the local tissue microenvironment. Adv. Healthc. Mater. 2015, 4, 1584-1599.

7

Klattenhoff, C. A.; Scheuermann, J. C.; Surface, L. E.; Bradley, R. K.; Fields, P. A.; Steinhauser, M. L.; Ding, H. M.; Butty, V. L.; Torrey, L.; Haas, S. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013, 152, 570-583.

8

Yu, H.; Pardoll, D.; Jove, R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat. Rev. Cancer 2009, 9, 798-809.

9

Foster, K. S. J.; McCrary, W. J.; Ross, J. S.; Wright, C. F. Members of the hSWI/SNF chromatin remodeling complex associate with and are phosphorylated by protein kinase B/Akt. Oncogene 2006, 25, 4605-4612.

10

Zhang, J.; Lv, J.; Wang, X. N.; Li, D. F.; Wang, Z. X.; Li, G. X. Integration of chemoselective ligation with enzymespecific catalysis: Saccharic colorimetric analysis using aminooxy/hydrazine-functionalized gold nanoparticles. Nano Res. 2015, 8, 3853-3863.

11

Gan, L.; Yang, M. J.; Ke, X.; Cui, G. F.; Chen, X. D.; Gupta, S.; Kellogg, W.; Higgins, D.; Wu, G. Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface-enhanced Raman spectroscopy. Nano Res. 2015, 8, 2351-2362.

12

Kirsch, T. Determinants of pathological mineralization. Curr. Opin. Rheumatol. 2006, 18, 174-180.

13

Hudelist, G.; Singer, C. F.; Kubista, E.; Manavi, M.; Mueller, R.; Pischinger, K.; Czerwenka, K. Presence of nanobacteria in psammoma bodies of ovarian cancer: Evidence for pathogenetic role in intratumoral biomineralization. Histopathology 2004, 45, 633-637.

14

Eyre, D. R.; Weis, M. A. Bone collagen: New clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif. Tissue Int. 2013, 93, 338-347.

15

Ichikawa, H.; Imano, M.; Takeyama, Y.; Shiozaki, H.; Ohyanagi, H. Involvement of osteopontin as a core protein in cholesterol gallstone formation. J. Hepatobiliary Pancreat Surg. 2009, 16, 197-203.

16

Guo, Y.; Zhang, D.; Lu, H.; Luo, S.; Shen, X. Association between calcifying nanoparticles and placental calcification. Int. J. Nanomedicine 2012, 7, 1679-1686.

17

Tang, Y. N.; Ding, W. Q.; Guo, X. J.; Yuan, X. W.; Wang, D. M.; Song, J. G. Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung cancer growth and metastasis. Nat. Commun. 2015, 6, 8230.

18

Chen, Q.; Hongu, T.; Sato, T.; Zhang, Y.; Ali, W.; Cavallo, J. A.; van der Velden, A.; Tian, H. S.; Di Paolo, G.; Nieswandt, B. et al. Key roles for the lipid signaling enzyme phospholipase D1 in the tumor microenvironment during tumor angiogenesis and metastasis. Sci. Signal. 2012, 5, ra79.

19

Belle, L.; Ali, N.; Lonic, A.; Li, X.; Paltridge, J. L.; Roslan, S.; Herrmann, D.; Conway, J. R.; Gehling, F. K.; Bert, A. G. et al. The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Sci. Signal. 2015, 8, ra18.

20

Song, W.; Liu, W. J.; Zhao, H.; Li, S. Z.; Guan, X.; Ying, J. M.; Zhang, Y. F.; Miao, F.; Zhang, M. M.; Ren, X. X. et al. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat. Commun. 2015, 6, 8022.

21

West, N. R.; McCuaig, S.; Franchini, F.; Powrie, F. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol. 2015, 15, 615-629.

22

Ouchi, N.; Kihara, S.; Arita, Y.; Okamoto, Y.; Maeda, K.; Kuriyama, H.; Hotta, K.; Nishida, M.; Takahashi, M.; Muraguchi, M. et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 2000, 102, 1296-1301.

23

Selkoe, D. J. Alzheimer's disease: Genes, proteins, and therapy. Physiol. Rev. 2001, 81, 741-766.

24

Thadhani, R.; Solomon, C. G. Preeclampsia-A glimpse into the future. N. Engl. J. Med. 2008, 359, 858-860.

25

Redman, C. W.; Sargent, I. L. Latest advances in understanding preeclampsia. Science 2005, 308, 1592-1594.

26

Roberts, J. M.; Gammill, H. S. Preeclampsia: Recent insights. Hypertension 2005, 46, 1243-1249.

27

Zong, L.; Wang, L. J.; Huang, P.; Shao, W. Y.; Song, Y.; Gou, W. L. High temperature requirement A1 in placental tissues and serum from pre-eclamptic pregnancies with or without fetal growth restriction. Arch. Med. Sci. 2013, 9, 690-696.

28

Zong, L.; Gou, W. L.; Shao, W. Y.; Huang, P.; Li, C. F. Changes in the level of serum high-temperature requirement A1 (HtrA1) during pregnancy and its relationship to preeclampsia. Hypertens. Pregnancy 2012, 31, 389-397.

29

Ajayi, F.; Kongoasa, N.; Gaffey, T.; Asmann, Y. W.; Watson, W. J.; Baldi, A.; Lala, P.; Shridhar, V.; Brost, B.; Chien, J. Elevated expression of serine protease HtrA1 in preeclampsia and its role in trophoblast cell migration and invasion. Am. J. Obstet. Gynecol. 2008, 199, 557. e1-557. e10.

30

Frochaux, V.; Hildebrand, D.; Talke, A.; Linscheid, M. W.; Schlüter, H. Alpha-1-antitrypsin: A novel human high temperature requirement protease A1 (HTRA1) substrate in human placental tissue. PLoS One 2014, 9, e109483.

31

Carter, C. J.; Ackerson, C. J.; Feldheim, D. L. Unusual reactivity of a silver mineralizing peptide. ACS Nano 2010, 4, 3883-3888.

32

Hitomi, K.; Kitamura, M.; Sugimura, Y. Preferred substrate sequences for transglutaminase 2: Screening using a phage-displayed peptide library. Amino Acids 2009, 36, 619-624.

33

Parry, S.; Zhang, H.; Biggio, J.; Bukowski, R.; Varner, M.; Xu, Y.; Andrews, W. W.; Saade, G. R.; Esplin, M. S.; Leite, R. et al. Maternal serum serpin B7 is associated with early spontaneous preterm birth. Am. J. Obstet. Gynecol. 2014, 211, 678. e1-678. e12.

34

John, K.; Wielgosz, S.; Schulze-Osthoff, K.; Bantel, H.; Hass, R. Increased plasma levels of CK-18 as potential cell death biomarker in patients with HELLP syndrome. Cell Death Dis. 2013, 4, e886.

Nano Research
Pages 1489-1496
Cite this article:
Zhang Y, Li H, Huang Y, et al. Peptide-induced bio-mineralization as a bio-mimetic means of detecting proteins in a mineralizing bio-context. Nano Research, 2016, 9(5): 1489-1496. https://doi.org/10.1007/s12274-016-1045-6
Metrics & Citations  
Article History
Copyright
Return