AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Probing the seeded protocol for high-concentration preparation of silver nanowires

Cheng WangBaisong ChengHaichuan ZhangPengbo WanLiang Luo( )Yun Kuang( )Xiaoming Sun
State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyP.O. Box 98Beijing100029China
Show Author Information

Graphical Abstract

Abstract

Mass production of high-quality silver nanowires (Ag NWs) is of significant importance because of its potential applications in flexible transparent conductive devices. Halogen ions have been widely used for the synthesis of Ag NWs; however, owing to the lack of a deep insight into heterogeneous nucleation processes, usually a trace feeding amount (e.g. [Cl] < 0.25 mM) is used, which in turn lowers the concentration of precursor ([Ag+]). Here we systematically investigated the nucleation and growth behavior of Ag NWs and concluded that the number of heterogeneous nucleation sites was determined by the total surface area of AgCl seeds, which indicated a linear relationship between the concentrations of Ag+ and Cl during precipitation. Based on this mechanism, we successfully produced high-quality Ag NWs with Ag+ concentrations which were 20 times higher for a polyol system and 5 times higher for an aqueous system as compared to that in the previously reported strategies. Besides, by tailoring the heterogeneous nucleation sites by controlling the size of the AgCl seeds, the diameters of the final Ag NWs could be well controlled even at high Ag+ concentration. Based on the mechanistic understandings, this synthetic strategy could be extended to other AgX-seeds (X = Br, I and SO42–) and the basic principles can be applied to help rational synthesis of other high-yield metal NWs with tunable sizes.

Electronic Supplementary Material

Download File(s)
nr-9-5-1532_ESM.pdf (2.1 MB)

References

1

Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14, 4736-4745.

2

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669-3712.

3

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60-103.

4

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494-521.

5

Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913-3961.

6

Zhu, R.; Chung, C. H.; Cha, K. C.; Yang, W. B.; Zheng, Y. B.; Zhou, H. P.; Song, T. B.; Chen, C. C.; Weiss, P. S.; Li, G. et al. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 2011, 5, 9877-9882.

7

Ye, S. R.; Rathmell, A. R.; Chen, Z. F.; Stewart, I. E.; Wiley, B. J. Metal nanowire networks: The next generation of transparent conductors. Adv. Mater. 2014, 26, 6670-6687.

8

Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564-573.

9

Liang, J. J.; Li, L.; Niu, X. F.; Yu, Z. B.; Pei, Q. B. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 2013, 7, 817-824.

10

Wu, H.; Kong, D. S.; Ruan, Z. C.; Hsu, P. C.; Wang, S.; Yu, Z. F.; Carney, T. J.; Hu, L. B.; Fan, S. H.; Cui, Y. A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 2013, 8, 421-425.

11

Zeng, X. Y.; Zhang, Q. K.; Yu, R. M.; Lu, C. Z. A new transparent conductor: Silver nanowire film buried at the surface of a transparent polymer. Adv. Mater. 2010, 22, 4484-4488.

12

Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003, 3, 1229-1233.

13

Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165-168.

14

Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3, 955-960.

15

Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733-1739.

16

Sun, X. M.; Li, Y. D. Cylindrical silver nanowires: Preparation, structure, and optical properties. Adv. Mater. 2005, 17, 2626-2630.

17

Sun, Y. G.; Ren, Y.; Liu, Y. Z.; Wen, J. G.; Okasinski, J. S.; Miller, D. J. Ambient-stable tetragonal phase in silver nanostructures. Nat. Commun. 2012, 3, 971.

18

Luo, M.; Huang, H. W.; Choi, S. I.; Zhang, C.; da Silva, R. R.; Peng, H. C.; Li, Z. Y.; Liu, J. Y.; He, Z. K.; Xia, Y. N. Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using Pd decahedra of 16 nm in size as seeds. ACS Nano 2015, 9, 10523-10532.

19

Korte, K. E.; Skrabalak, S. E.; Xia, Y. N. Rapid synthesis of silver nanowires through a CuCl- or CuCl2- mediated polyol process. J. Mater. Chem. 2008, 18, 437-441.

20

Gou, L. F.; Chipara, M.; Zaleski, J. M. Convenient, rapid synthesis of Ag nanowires. Chem. Mater. 2007, 19, 1755-1760.

21

Ran, Y. X.; He, W. W.; Wang, K.; Ji, S. L.; Ye, C. H. A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chem. Commun. 2014, 50, 14877-14880.

22

Hu, L. B.; Kim, H. S.; Lee, J. -Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955-2963.

23

Schuette, W. M.; Buhro, W. E. Silver chloride as a heterogeneous nucleant for the growth of silver nanowires. ACS Nano 2013, 7, 3844-3853.

24

Liu, S.; Yue, J.; Gedanken, A. Synthesis of long silver nanowires from AgBr nanocrystals. Adv. Mater. 2001, 13, 656-658.

25

Wang, Z. H.; Liu, J. W.; Chen, X. Y.; Wan, J. X.; Qian, Y. T. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem. -Eur. J. 2005, 11, 160-163.

26

Tetsumoto, T.; Gotoh, Y.; Ishiwatari, T. Mechanistic studies on the formation of silver nanowires by a hydrothermal method. J. Colloid Interface Sci. 2011, 362, 267-273.

27

Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. N. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. 2005, 117, 2192-2195.

28

Zhu, J. J.; Kan, C. X.; Wan, J. G.; Han, M.; Wang, G. H. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomater. 2011, 2011, Article ID 982547.

29

Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y. J.; Li, Z. Y.; Ginger, D.; Xia, Y. N. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 2007, 7, 1032-1036.

30

Tang, Y. X.; Jiang, Z. L.; Xing, G. C.; Li, A. R.; Kanhere, P. D.; Zhang, Y. Y.; Sum, T. C.; Li, S. Z.; Chen, X. D.; Dong, Z. L. et al. Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Adv. Funct. Mater. 2013, 23, 2932-2940.

31

Lou, Z. Z.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Cheng, H. F.; Liu, Y. Y.; Wang, S. Y.; Wang, J. P.; Dai, Y. One-step synthesis of AgCl concave cubes by preferential overgrowth along < 111 > and < 110 > directions. Chem. Commun. 2012, 48, 3488-3490.

32

Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410-8426.

33

Lee, J. H.; Lee, P.; Lee, D.; Lee, S. S.; Ko, S. H. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst. Growth Des. 2012, 12, 5598-5605.

34

Yang, Z. Q.; Qian, H. J.; Chen, H. Y.; Anker, J. N. One-pot hydrothermal synthesis of silver nanowires via citrate reduction. J. Colloid Interface Sci. 2010, 352, 285-291.

35

Xu, J.; Hu, J.; Peng, C. J.; Liu, H. L.; Hu, Y. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J. Colloid Interface Sci. 2006, 298, 689-693.

36

Xu, X. X.; Zhuang, J.; Wang, X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 2008, 130, 12527-12535.

37

Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577-5594.

38

Li, B.; Ye, S. R.; Stewart, I. E.; Alvarez, S.; Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 2015, 15, 6722-6726.

Nano Research
Pages 1532-1542
Cite this article:
Wang C, Cheng B, Zhang H, et al. Probing the seeded protocol for high-concentration preparation of silver nanowires. Nano Research, 2016, 9(5): 1532-1542. https://doi.org/10.1007/s12274-016-1049-2

726

Views

29

Crossref

N/A

Web of Science

33

Scopus

4

CSCD

Altmetrics

Received: 08 January 2016
Revised: 01 February 2016
Accepted: 14 February 2016
Published: 29 September 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return