Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting

Yankuan WeiJinzhan Su()Xiaokang WanLiejin GuoLionel Vayssieres()
International Research Center for Renewable EnergyState Key Laboratory for Multiphase Flow in Power EngineeringSchool of Energy & Power EngineeringXi'an Jiaotong UniversityXi'an710049China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

In this study, a potentially universal new strategy is reported for the large-scale, low-cost fabrication of visible-light-active highly ordered heteronanostructures based on the spontaneous photoelectric-field-enhancement effect inherent in pyramidal morphology. The hierarchical vertically oriented arrayed structures comprise an active molecular co-catalyst at the apex of a visible-light-active large band gap semiconductor for low-cost solar water splitting in a neutral aqueous medium without the use of a sacrificial agent.

Electronic Supplementary Material

Download File(s)
nr-9-6-1561_ESM.pdf (2.6 MB)

References

1

Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.

2

Liang, D.; Huo, Y. J.; Kang, Y. S.; Wang, K. X.; Gu, A. J.; Tan, M.; Yu, Z. F.; Li, S.; Jia, J. Y.; Bao, X. Y. et al. Optical absorption enhancement in freestanding GaAs thin film nanopyramid arrays. Adv. Energy Mater. 2012, 2, 1254–1260.

3

Lin, H.; Xiu, F.; Fang, M.; Yip, S.; Cheung, H. Y.; Wang, F. Y.; Han, N.; Chan, K. S.; Wong, C. Y.; Ho, J. C. Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. ACS Nano 2014, 8, 3752–3760.

4

Wang, X. J.; Tian, J. F.; Yang, T. Z.; Bao, L. H.; Hui, C.; Liu, F.; Shen, C. M.; Xu, N. S.; Gao, H. J. Single crystalline boron nanocones: Electric transport and field emission properties. Adv. Mater. 2007, 19, 4480–4485.

5

Toma, M.; Loget, G.; Corn, R. M. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Nano Lett. 2013, 13, 6164–6169.

6

Wang, K. X. Z.; Wu, Z. F.; Liu, V.; Brongersma, M. L.; Jaramillo, T. F.; Fan, S. H. Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting. ACS Photonics 2014, 1, 235–240.

7

Su, J. Z.; Guo, L. J.; Yoriya, S.; Grimes, C. A. Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting. Cryst. Growth Des. 2010, 10, 856–861.

8

Li, W.; Wu, Z. X.; Wang, J. X.; Elzatahry, A. A.; Zhao, D. Y. A perspective on mesoporous TiO2 materials. Chem. Mater. 2014, 26, 287–298.

9

Wang, N.; Wang, D. G.; Li, M. R.; Shi, J. Y.; Li, C. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Nanoscale 2014, 6, 2061–2066.

10

Mayer, M. T.; Lin, Y. J.; Yuan, G. B.; Wang, D. W. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: Case studies on hematite. Acc. Chem. Res. 2013, 46, 1558–1566.

11

Shao, M. F.; Ning, F. Y.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Funct. Mater. 2014, 24, 580–586.

12

Rao, P. M.; Cai, L. L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P. D.; Zheng, X. L. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014, 14, 1099–1105.

13

Sun, S. M.; Wang, W. Z.; Li, D. Z.; Zhang, L.; Jiang, D. Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst. ACS Catal. 2014, 4, 3498–3503.

14

Sayama, K.; Nomura, A.; Zou, Z. G.; Abe, R.; Abe, Y.; Arakawa, H. Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem. Commun. 2003, 2908–2909.

15

Abdi, F. F.; Dabirian, A.; Dam, B.; van de Krol, R. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core–shell nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 15272– 15277.

16

Su, J. Z.; Guo, L. J.; Bao, N. Z.; Grimes, C. A. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011, 11, 1928–1933.

17

Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

18

Wang, T.; Li, C. J.; Ji, J. Y.; Wei, Y. J.; Zhang, P.; Wang, S. P.; Fan, X. B.; Gong, J. L. Reduced graphene oxide (rGO)/ BiVO4 composites with maximized interfacial coupling for visible light photocatalysis. ACS Sustainable Chem. Eng. 2014, 2, 2253–2258.

19

Martin, D. J.; Reardon, P. J. T.; Moniz, S. J. A.; Tang, J. W. Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. J. Am. Chem. Soc. 2014, 136, 12568–12571.

20

Usai, S.; Obregón, S.; Becerro, A. I.; Colón, G. Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. J. Phys. Chem. C 2013, 117, 24479–24484.

21

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

22

McDowell, M. T.; Lichterman, M. F.; Spurgeon, J. M.; Hu, S.; Sharp, I. D.; Brunschwig, B. S.; Lewis, N. S. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings. J. Phys. Chem. C 2014, 118, 19618–19624.

23

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

24

Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 2009, 38, 109–114.

25

Jeon, T. H.; Choi, W.; Park, H. Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. Phys. Chem. Chem. Phys. 2011, 13, 21392–21401.

26

Pilli, S. K.; Deutsch, T. G.; Furtak, T. E.; Turner, J. A.; Brown, L. D.; Herring, A. M. Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2-BiVO4 electrodes. Phys. Chem. Chem. Phys. 2012, 14, 7032–7039.

27

Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 2011, 4, 5028–5034.

28

Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W: BiVO4. J. Am. Chem. Soc. 2011, 133, 18370–18377.

29

Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628.

30

Roth, R. S.; Waring, J. L. Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds. Am. Mineral. 1963, 48, 1348–1356.

31

Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.

32

Sleight, A. W.; Chen, H. Y.; Ferretti, A.; Cox, D. E. Crystal growth and structure of BiVO4. Mater. Res. Bull. 1979, 14, 1571–1581.

33

McDonald, K. J.; Choi, K. S. Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem. Mater. 2011, 23, 1686–1693.

34

Su, J.; Zou, X. X.; Li, G. D.; Wei, X.; Yan, C.; Wang, Y. N.; Zhao, J.; Zhou, L. J.; Chen, J. S. Macroporous V2O5-BiVO4 composites: Effect of heterojunction on the behavior of photogenerated charges. J. Phys. Chem. C 2011, 115, 8064–8071.

35

Chen, L.; Aarcón-Ladó, E.; Hettick, M.; Sharp, I. D.; Lin, Y. J.; Javey, A.; Ager, J. W. Reactive sputtering of bismuth vanadate photoanodes for solar water splitting. J. Phys. Chem. C 2013, 117, 21635–21642.

36

Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P. -A.; Guo, J. H.; Ager, J. W.; Yano, J.; Sharp, I. D. Electronic structure of monoclinic BiVO4. Chem. Mater. 2014, 26, 5365–5373.

37

Kweon, K. E.; Hwang, G. S. Structural phase-dependent hole localization and transport in bismuth vanadate. Phys. Rev. B 2013, 87, 205202.

38

Steinmiller, E. M. P.; Choi, K. S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA 2009, 106, 20633–20636.

39

Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J. S.; Bard, A. J.; Mullins, C. B. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 2013, 135, 11389–11396.

Nano Research
Pages 1561-1569
Cite this article:
Wei Y, Su J, Wan X, et al. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Research, 2016, 9(6): 1561-1569. https://doi.org/10.1007/s12274-016-1050-9
Metrics & Citations  
Article History
Copyright
Return