AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells

Weibo Yan1,§Yu Li2,§Senyun Ye1Yunlong Li1Haixia Rao1Zhiwei Liu1Shufeng Wang2( )Zuqiang Bian1( )Chunhui Huang1
State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
State Key Laboratory for Mesoscopic PhysicsDepartment of PhysicsPeking UniversityBeijing100871China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

A series of conductive polymers, i.e., poly(3-methylthiophene) (PMT), poly(thiophene) (PT), poly(3-bromothiophene) (PBT) and poly(3-chlorothiophene) (PCT), were prepared via the electrochemical polymerization process. Subsequently, their application as hole-transporting materials (HTMs) in CH3NH3PbI3 perovskite solar cells was explored. It was found that rationally increasing the work function of HTMs proves beneficial in improving the open circuit voltage (Voc) of the devices with an ITO/conductive-polymer/CH3NH3PbI3/C60/BCP/Ag structure. In addition, the higher-Voc devices with a higher-work-function HTM exhibited higher recombination resistances. The highest open circuit voltage of 1.04 V was obtained from devices with PCT, with a work function of–5.4 eV, as the hole-transporting layer. Its power conversion efficiency attained a value of approximately 16.5%, with a high fill factor of 0.764, an appreciable open voltage of 1.01 V and a short circuit current density of 21.4 mA·cm–2. This simple, controllable and low-cost manner of preparing HTMs will be beneficial to the production of large-area perovskite solar cells with a hole-transporting layer.

Electronic Supplementary Material

Download File(s)
nr-9-6-1600_ESM.pdf (4.7 MB)

References

1

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

2

Wang, J. T. W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J. et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014, 14, 724–730.

3

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

4

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

5

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Il. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

6

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

7

Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.

8

Ryu, S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Yang, W. S.; Seo, J.; Seok, S. Il. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 2014, 7, 2614–2618.

9

Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.

10

Yan, W. B.; Li, Y. L.; Li, Y.; Ye, S. Y.; Liu, Z. W.; Wang, S. F.; Bian, Z. Q.; Huang, C. H. High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 2015, 16, 428–437.

11

Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I. Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 1628–1635.

12

Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 2014, 136, 758–764.

13

Guillén, E.; Ramos, F. J.; Anta, J. A.; Ahmad, S. Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques. J. Phys. Chem. C 2014, 118, 22913–22922.

14

Gonzalez-Pedro, V.; Juarez-Perez, E. J.; Arsyad, W. S.; Barea, E. M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J. General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett. 2014, 14, 888–893.

15

Juarez-Perez, E. J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 680–685.

16

Frohne, H.; Shaheen, S. E.; Brabec, C. J.; Müller, D. C.; Sariciftci, N. S.; Meerholz, K. Influence of the anodic work function on the performance of organic solar cells. Chem. Phys. Chem. 2002, 3, 795–799.

17

Yan, W. B.; Li, Y. L.; Li, Y.; Ye, S. Y.; Liu, Z. W.; Wang, S. F.; Bian, Z. Q.; Huang, C. H. Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer. Nano Res. 2015, 8, 2474–2480.

18

Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed. 2014, 53, 9898–9093.

19

Jeon, N. J. J.; Noh, H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. Il. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

20

Ye, S. Y.; Sun, W. H.; Li, Y. L.; Yan, W. B.; Peng, H. T.; Bian, Z. Q.; Liu, Z. W.; Huang, C. H. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Lett. 2015, 15, 3723–3728.

21

Jeon, N. J.; Lee, H. G.; Kim, Y. C.; Seo, J.; Noh, J. H.; Lee, J.; Seok, S. Il. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic–organic hybrid perovskite solar cells. J. Am. Chem. Soc. 2014, 136, 7837–7840.

22

Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

23

Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J.; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.

24

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

25

Dualeh, A.; Moehl, T.; Nazeeruddin, M. K.; Grätzel, M. Temperature dependence of transport properties of spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells. ACS Nano 2013, 7, 2292–2301.

26

Sanchez, R. S.; Gonzalez-Pedro, V.; Lee, J. W.; Park, N. G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 2014, 5, 2357–2363.

27

Kim, H. S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E. J.; Park, N. G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 2013, 4, 2242.

28

Zhu, L. F.; Xiao, J. Y.; Shi, J. J.; Wang, J. J.; Lv, S. T.; Xu, Y. Z.; Luo, Y. H.; Xiao, Y.; Wang, S. R.; Meng, Q. B. et al. Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Res. 2015, 8, 1116–1127.

Nano Research
Pages 1600-1608
Cite this article:
Yan W, Li Y, Ye S, et al. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells. Nano Research, 2016, 9(6): 1600-1608. https://doi.org/10.1007/s12274-016-1054-5

775

Views

50

Crossref

N/A

Web of Science

51

Scopus

3

CSCD

Altmetrics

Received: 21 November 2015
Revised: 17 February 2016
Accepted: 21 February 2016
Published: 08 April 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return