Graphical Abstract

Scrupulous design and fabrication of advanced electrode materials are vital for developing high-performance sodium ion batteries. Herein, we report a facile one-step hydrothermal strategy for construction of a C-MoSe2/rGO composite with both high porosity and large surface area. Double modification of MoSe2 nanosheets is realized in this composite by introducing a reduced graphene oxide (rGO) skeleton and outer carbon protective layer. The MoSe2 nanosheets are well wrapped by a carbon layer and also strongly anchored on the interconnected rGO network. As an anode in sodium ion batteries, the designed C-MoSe2/rGO composite delivers noticeably enhanced sodium ion storage, with a high specific capacity of 445 mAh·g-1 at 200 mA·g-1 after 350 cycles, and 228 mAh·g-1 even at 4 A·g-1; these values are much better than those of C-MoSe2 nanosheets (258 mAh·g-1 at 200 mA·g-1 and 75 mAh·g-1 at 4 A·g-1). Additionally, the sodium ion storage mechanism is investigated well using ex situ X-ray diffraction and transmission electron microscopy methods. Our proposed electrode design protocol and sodium storage mechanism may pave the way for the fabrication of other high-performance metal diselenide anodes for electrochemical energy storage.
David, L.; Bhandavat, R.; Singh, G. MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 2014, 8, 1759–1770.
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.
Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.
Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480–5484.
Zhang, J. J.; Xu, Y. H.; Fan, L.; Zhu, Y. C.; Liang, J. W.; Qian, Y. T. Graphene-encapsulated selenium/polyaniline core–shell nanowires with enhanced electrochemical performance for Li–Se batteries. Nano Energy 2015, 13, 592–600.
Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595–1603.
Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072.
Li, Y. F.; Liang, Y. L.; Robles Hernandez, F. C.; Yoo, H. D.; An, Q. Y.; Yao, Y. Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 2015, 15, 453–461.
Hong, S. Y.; Kim, Y. J.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.
Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.
Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403.
Hu, X. L.; Zhang, W.; Liu, X. X.; Mei, Y. N.; Huang, Y. H. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 2015, 44, 2376–2404.
Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794–12798.
Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 2014, 53, 2152–2156.
Wang, J. J.; Luo, C.; Gao, T.; Langrock, A.; Mignerey, A. C.; Wang, C. S. An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 2015, 11, 473–481.
Yao, J. Y.; Liu, B. R.; Ozden, S.; Wu, J. J.; Yang, S. B.; Rodrigues, M. T. F.; Kalaga, K.; Dong, P.; Xiao, P.; Zhang, Y. H. et al. 3D nanostructured molybdenum diselenide/ graphene foam as anodes for long-cycle life lithium-ion batteries. Electrochim. Acta 2015, 176, 103–111.
Shi, Z. T.; Kang, W. P.; Xu, J.; Sun, L. L.; Wu, C. Y.; Wang, L.; Yu, Y. Q.; Yu, D. Y. W.; Zhang, W. J.; Lee, C. S. In situ carbon-doped Mo(Se0.85S0.15)2 hierarchical nanotubes as stable anodes for high-performance sodium-ion batteries. Small 2015, 11, 5667–5674.
Yang, X.; Zhang, Z. A.; Fu, Y.; Li, Q. Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage. Nanoscale 2015, 7, 10198–10203.
Shi, Y. F.; Hua, C. X.; Li, B.; Fang, X. P.; Yao, C. H.; Zhang, Y. C.; Hu, Y. S.; Wang, Z. X.; Chen, L. Q.; Zhao, D. Y. et al. Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance. Adv. Funct. Mater. 2013, 23, 1832–1838.
Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y.; Guo, P. F. et al. Growth of alloy MoS2xSe2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.
Zhang, Z. A.; Fu, Y.; Yang, X.; Qu, Y. H.; Zhang, Z. Y. Hierarchical MoSe2 nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance. ChemNanoMat 2015, 1, 409–414.
Zhou, F.; Xin, S.; Liang, H. W.; Song, L. T.; Yu, S. H. Carbon nanofibers decorated with molybdenum disulfide nanosheets: Synergistic lithium storage and enhanced electrochemical performance. Angew. Chem., Int. Ed. 2014, 53, 11552–11556.
Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192–4195.
Wang, H.; Lan, X. Z.; Jiang, D. L.; Zhang, Y.; Zhong, H. H.; Zhang, Z. P.; Jiang, Y. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources 2015, 283, 187–194.
Zhang, Z. A.; Yang, X.; Fu, Y.; Du, K. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J. Power Sources 2015, 296, 2–9.
Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.
Xie, D.; Tang, W. J.; Xia, X. H.; Wang, D. H.; Zhou, D.; Shi, F.; Wang, X. L.; Gu, C. D.; Tu, J. P. Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. J. Power Sources 2015, 296, 392–399.
Liu, Y.; Zhu, M. Q.; Chen, D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties. J. Mater. Chem. A 2015, 3, 11857–11862.
Chen, R. J.; Zhao, T.; Wu, W. P.; Wu, F.; Li, L.; Qian, J.; Xu, R.; Wu, H. M.; Albishri, H. M.; Al-Bogami, A. S. et al. Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett. 2014, 14, 5899–5904.
Sun, D.; Feng, S. M.; Terrones, M.; Schaak, R. E. Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chem. Mater. 2015, 27, 3167–3175.
Balasingam, S. K.; Lee, J. S.; Jun, Y. Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton Trans. 2015, 44, 15491–15498.
Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 2011, 5, 4112–4117.
Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.
Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 2000, 85, 5214–5217.
Zhang, C. H.; Fu, L.; Liu, N.; Liu, M. H.; Wang, Y. Y.; Liu, Z. F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020– 1024.
Xie, D.; Wang, D. H.; Tang, W. J.; Xia, X. H.; Zhang, Y. J.; Wang, X. L.; Gu, C. D.; Tu, J. P. Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage. J. Power Sources 2016, 307, 510–518.
Wang, R. H.; Xu, C. H.; Sun, J.; Liu, Y. Q.; Gao, L.; Yao, H. L.; Lin, C. C. Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteries. Nano Energy 2014, 8, 183–195.
Wang, H. T.; Kong, D. S.; Johanes, P.; Cha, J. J.; Zheng, G. Y.; Yan, K.; Liu, N.; Cui, Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013, 13, 3426–3433.
Wang, X. F.; Shen, X.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394–11400.
Su, D. W.; Dou, S. X.; Wang, G. X. Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater. 2015, 5, 1401205.
Luo, C.; Wang, J. J.; Suo, L. M.; Mao, J. F.; Fan, X. L.; Wang, C. S. In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries. J. Mater. Chem. A 2015, 3, 555–561.
Luo, C.; Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Zheng, S. Y.; Liu, Y.; Langrock, A.; Wang, C. S. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013, 7, 8003–8010.
Jeong, J. M.; Lee, K. G.; Chang, S. J.; Kim, J. W.; Han, Y. K.; Lee, S. J.; Choi, B. G. Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries. Nanoscale 2015, 7, 324–329.
Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837–3848.
Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang, G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970–975.
Yu, X. Y.; Wang, L.; Liu, J. F.; Sun, X. M. Porous MoO3 film as a high-performance anode material for lithium-ion batteries. ChemElectroChem 2014, 1, 1476–1479.
Yin, Z. Y.; Zhang, X.; Cai, Y. Q.; Chen, J. Z.; Wong, J. I.; Tay, Y. Y.; Chai, J. W.; Wu, J.; Zeng, Z. Y.; Zheng, B. et al. Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes. Angew. Chem. 2014, 126, 12768–12773.
Sen, U. K.; Johari, P.; Basu, S.; Nayak, C.; Mitra, S. An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide. Nanoscale 2014, 6, 10243–10254.