Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Combining infrared and mode synthesizing atomic force microscopy: Application to the study of lipid vesicles inside Streptomyces bacteria

Pauline Vitry1Rolando Rebois2Eric Bourillot1()Ariane Deniset-Besseau2Marie-Joelle Virolle3Eric Lesniewska1Alexandre Dazzi2
ICB UMR CNRS 6303University of Bourgogne Franche Comté21078Dijon, France
LCP UMR CNRS 8000University Paris-Sud91405Orsay, France
I2BC UMR CNRS 9198University Paris-Sud91190Gif-Sur-Yvette, France
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

We propose a new analytical approach combining vibrational spectroscopy and acoustic tomography for the detection and characterization of vesicles inside Streptomyces bacteria. Using atomic force microscopy and infrared spectroscopy (AFM-IR), we detect the presence of triglyceride vesicles. Their sizes in depth are measured with high accuracy using mode synthesizing atomic force microscopy (MS-AFM). We conducted a comparative study of AFM-IR and MS-AFM, and highlighted the advantages of the coupling of these techniques in having a full characterization (chemical, topographical, and volumetric) of a biological sample. With these complementary techniques, a complete access to the vesicle size distribution has been achieved with an accuracy of less than 50 nm. A 3D reconstruction of bacteria showing the in-depth distribution of vesicles is given to underline the great potential of the acoustic method.

References

1

Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621-639.

2

Ranade, N.; Vining, L. C. Accumulation of intracellular carbon reserves in relation to chloramphenicol biosynthesis by Streptomyces venezuelae. Can. J. Microbiol. 1993, 39, 377-383.

3

Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713-3729.

4

Chen, F.; Dixon, R. A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 2007, 25, 759-761.

5

Atsumi, S.; Liao, J. C. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol. 2008, 19, 414-419.

6

Lu, X. F.; Vora, H.; Khosla, C. Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Metab. Eng. 2008, 10, 333-339.

7

Bokinsky, G.; Peralta-Yahya, P. P.; George, A.; Holmes, B. M.; Steen, E. J.; Dietrich, J.; Lee, T. S.; Tullman-Ercek, D.; Voigt, C. A.; Simmons, B. A. et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci. USA 2011, 108, 19949-19954.

8

Hopwood, D. A. Streptomyces in Nature and Medicine: The Antibiotic Makers; Oxford University Press: Oxford, 2007.

9

Butler, P. R.; Brown, M.; Oliver, S. G. Improvement of antibiotic titers from Streptomyces bacteria by interactive continuous selection. Biotechnol. Bioeng. 1996, 49, 185-196.

10

Goodfellow, M.; Williams, S. T.; Mordarski, M. Actinomycetes in Biotechnology; Academic Press: San Diego, 1988.

11

Coze, F.; Gilard, F.; Tcherkez, G.; Virolle, M. -J.; Guyonvarch, A. Carbon-flux distribution within Streptomyces coelicolor metabolism: A comparison between the actinorhodin- producing strain M145 and its non-producing derivative M1146. PLoS One 2013, 8, e84151.

12

Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930-933.

13

Binnig, G.; Gerber, C.; Stoll, E.; Albrecht, T. R.; Quate, C. F. Atomic resolution with atomic force microscope. EPL (Europhys. Lett.) 1987, 3, 1281-1286.

14

Kulik, A.; Attal, J.; Gremaud, G. Nearfield scanning acoustic microscopy. In Acoustical Imaging. Wei, Y.; Gu, B. L., Eds.; Springer: US, 1993; pp 241-244.

15

Passian, A.; Thundat, T. G.; Tetard, L. Mode-synthesizing atomic force microscopy and mode-synthesizing sensing. U. S. Patent 8, 448, 261, May 18, 2004.

16

Rabe, U.; Arnold, W. Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 1994, 64, 1493-1495.

17

Tetard, L.; Passian, A.; Venmar, K. T.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Dravid, V. P.; Thundat, T. Imaging nanoparticles in cells by nanomechanical holography. Nat. Nanotechnol. 2008, 3, 501-505.

18

Shekhawat, G.; Dravid, V. Seeing the invisible: Scanning near-field ultrasound holography (SNFUH) for high resolution sub-surface imaging. Microsc. Microanal. 2006, 12, 1214-1215.

19

Hammiche, A.; Pollock, H. M.; Reading, M.; Claybourn, M.; Turner, P. H.; Jewkes, K. Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl. Spectrosc. 1999, 53, 810-815.

20

Müller, T.; Ruggeri, F. S.; Kulik, A. J.; Shimanovich, U.; Mason, T. O.; Knowles, T. P. J.; Dietler, G. Nanoscale spatially resolved infrared spectra from single microdroplets. Lab Chip 2014, 14, 1315-1319.

21

Policar, C.; Waern, J. B.; Plamont, M. A.; Clède, S.; Mayet, C.; Prazeres, R.; Ortega, J. M.; Vessières, A.; Dazzi, A. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angew. Chem. 2011, 123, 890-894.

22

Dazzi, A.; Prater, C. B.; Hu, Q. C.; Chase, D. B.; Rabolt, J. F.; Marcott, C. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 2012, 66, 1365-1384.

23

Prater, C.; Kjoller, K.; Shetty, R. Nanoscale infrared spectroscopy. Mater. Today 2010, 13, 56-60.

24

Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Detection limits in photothermal microscopy. Chem. Sci. 2010, 1, 343-350.

25

Dazzi, A.; Glotin, F.; Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 2010, 107, 124519.

26

Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J. M. Analysis of nano-chemical mapping performed by an AFM-based ("AFMIR") acousto-optic technique. Ultramicroscopy 2007, 107, 1194-1200.

27

Wig, A.; Arakawa, E. T.; Passian, A.; Ferrell, T. L.; Thundat, T. Photothermal spectroscopy of Bacillus anthracis and Bacillus cereus with microcantilevers. Sensor. Actuat. B: Chem. 2006, 114, 206-211.

28

Lahiri, B.; Holland, G.; Centrone, A. Chemical imaging beyond the diffraction limit: Experimental validation of the PTIR technique. Small 2013, 9, 439-445.

29

Deniset-Besseau, A.; Prater, C. B.; Virolle, M. -J.; Dazzi, A. Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in Streptomyces species for biodiesel applications. J. Phys. Chem. Lett. 2014, 5, 654-658.

30

Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Tetard, L.; Lesniewska, E. Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy. Appl. Phys. Lett. 2014, 105, 053110.

31

Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Calkins, E.; Tetard, L.; Lesniewska, E. Mode-synthesizing atomic force microscopy for 3D reconstruction of embedded low-density dielectric nanostructures. Nano Res. 2015, 8, 2199-2205.

Nano Research
Pages 1674-1681
Cite this article:
Vitry P, Rebois R, Bourillot E, et al. Combining infrared and mode synthesizing atomic force microscopy: Application to the study of lipid vesicles inside Streptomyces bacteria. Nano Research, 2016, 9(6): 1674-1681. https://doi.org/10.1007/s12274-016-1061-6
Metrics & Citations  
Article History
Copyright
Return