AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide

Yun-Xiang Pan1( )Zheng-Qing Sun1Huai-Ping Cong1,2Yu-Long Men1Sen Xin1Jie Song3( )Shu-Hong Yu2( )
School of Chemistry and Chemical EngineeringHefei University of TechnologyHefei230009China
Division of Nanomaterials & ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryCAS Center for Excellence in NanoscienceUniversity of Science and Technology of ChinaHefei230026China
Institute of Nano Biomedicine and EngineeringDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240China
Show Author Information

Graphical Abstract

Abstract

Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an Vo influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on Vo-rich gallium oxide coated with Pt nanoparticles (Vo-rich Pt/Ga2O3), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0 μmol·h-1) compared to those on Vo-poor Pt/Ga2O3 (3.9 μmol·h-1) and Pt/TiO2(P25) (6.7 μmol·h-1). We demonstrate that the Vo leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga2O3, thus enhancing the photocatalytic activity of Pt/Ga2O3. Rational fabrication of an Vo is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction.

Electronic Supplementary Material

Download File(s)
nr-9-6-1689_ESM.pdf (1.6 MB)

References

1

Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.

2

Yin, G.; Nishikawa, M.; Nosaka, Y.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 2015, 9, 2111-2119.

3

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372-7408.

4

Singh, V.; Beltran, I. J. C.; Ribot, J. C.; Nagpal, P. Photocatalysis deconstructed: Design of a new selective catalyst for artificial photosynthesis. Nano Lett. 2014, 14, 597-603.

5

Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607-4626.

6

Yuan, L.; Xu, Y. -J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154-167.

7

Liu, S. Q.; Tang, Z. -R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y. -J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053-5075.

8

Zhang, N.; Yang, M. -Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y. -J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 2015, 115, 10307-10377.

9

Pan, X. Y.; Yang, M. -Q.; Fu, X. Z.; Zhang, N.; Xu, Y. -J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601-3614.

10

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821-831.

11

Zhao, Y. F.; Chen, G. B.; Tong, B.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824-7831.

12

Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. -Z.; Tung, C. -H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.

13

Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; O'Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. , in press, DOI: 10.1002/aenm.201501974.

14

Tan, L. -L.; Ong, W. -J.; Chai, S. -P.; Goh, B. T.; Mohamed, A. R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B: Environ. 2015, 179, 160-170.

15

Lin, J. L.; Pan, Z. M.; Wang, X. C. Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustainable Chem. Eng. 2014, 2, 353-358.

16

Núñez, J.; de la Peña O'Shea, V. A.; Jana, P.; Coronado, J. M.; Serrano, D. P. Effect of copper on the performance of ZnO and ZnO1xNx oxides as CO2 photoreduction catalysts. Catal. Today 2013, 209, 21-27.

17

Teramura, K.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem. Phys. Lett., 2008, 467, 191-194.

18

Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T. Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2. J. Phys. Chem. C 2010, 114, 8892-8898.

19

Liu, L. J.; Gao, F.; Zhao, H. L.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B: Environ. 2013, 134-135, 349-358.

20

Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang, D.; Ye, J. Leaf- architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667.

21

Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543-556.

22

Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013, 6, 562-577.

23

Park, H. -A.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 2012, 22, 5304-5307.

24

Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Chem. —Eur. J. 2014, 20, 9906-9909.

25

Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem. Commun. 1997, 841-842.

26

Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J. Chem. Soc. Faraday Trans. 1998, 94, 1875-1880.

27

Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of CO2 with H2 over ZrO2: A study on interaction of hydrogen with photoexcited CO2. Phys. Chem. Chem. Phys. 2000, 2, 2635-2639.

28

Kohno, Y.; Ishikawa, H.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys. Chem. Chem. Phys. 2001, 3, 1108- 1113.

29

Teramura, K.; Tanaka, T.; Ishikawa, H.; Kohno, Y.; Funabiki, T. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J. Phys. Chem. B 2004, 108, 346-354.

30

Teramura, K.; Okuoka, S. -I.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Appl. Catal. B: Environ. 2010, 96, 565-568.

31

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

32

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115- 13118.

33

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

34

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

35

Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 13089-13092.

36

Vincent, J.; Guillot-Noël, O.; Binet, L.; Aschehoug, P.; Le Du, Y.; Beaudoux, F.; Goldner, P. Electron paramagnetic resonance and optical spectroscopy of Er-doped β-Ga2O3. J. Appl. Phys. 2008, 104, 033519.

37

Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826-6829.

38

Yuan, Y. P.; Du, W. M.; Qian, X. F. ZnxGa2O3+x (0 ≤ x ≤ 1) solid solution nanocrystals: Tunable composition and optical properties. J. Mater. Chem. 2012, 22, 653-659.

39

Pan, Y. -X.; Liu, C. -J.; Mei, D. H.; Ge, Q. F. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on β-Ga2O3(100). Langmuir 2010, 26, 5551-5558.

40

Xu, Y. -J.; Li, J. -Q.; Zhang, Y. -F.; Chen, W. -K. The adsorption and dissociation of Cl2 on the MgO (001) surface with vacancies: Embedded cluster model study. J. Chem. Phys. 2004, 120, 8753-8760.

41

Di Valentin, C.; Pacchioni, G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. Acc. Chem. Res. 2014, 47, 3233-3241.

42

Ogale, S. B. Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 2010, 22, 3125-3155.

43

Song, C. P.; Wu, D. Q.; Zhang, F.; Liu, P.; Lu, Q. H.; Feng, X. L. Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem. Commun. 2012, 48, 2119-2121.

44

Pan, Y. -X.; Zhuang, H. Q.; Hong, J. D.; Fang, Z.; Liu, H.; Liu, B.; Huang, Y. Z.; Xu, R. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible- light-driven hydrogen evolution from water. ChemSusChem 2014, 7, 2537-2544.

45

Han, Y.; Liu, C. -J.; Ge, Q. F. Interaction of Pt clusters with the anatase TiO2(101) surface: A first principles study. J. Phys. Chem. B 2006, 110, 7463-7472.

46

Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 53, 1034-1038.

47

Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst- loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863- 20868.

48

Pan, Y. -X.; Liu, C. -J.; Wiltowski, T. S.; Ge, Q. F. CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: A density functional study. Catal. Today 2009, 147, 68-76.

49

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600-7603.

50

Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G., Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798-801.

Nano Research
Pages 1689-1700
Cite this article:
Pan Y-X, Sun Z-Q, Cong H-P, et al. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Research, 2016, 9(6): 1689-1700. https://doi.org/10.1007/s12274-016-1063-4

886

Views

143

Crossref

N/A

Web of Science

140

Scopus

14

CSCD

Altmetrics

Received: 07 February 2016
Revised: 28 February 2016
Accepted: 29 February 2016
Published: 28 April 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return