Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photocatalytic CO2 reduction on metal-oxide-based catalysts is promising for solving the energy and environmental crises faced by mankind. The oxygen vacancy (Vo) on metal oxides is expected to be a key factor affecting the efficiency of photocatalytic CO2 reduction on metal-oxide-based catalysts. Yet, to date, the question of how an Vo influences photocatalytic CO2 reduction is still unanswered. Herein, we report that, on Vo-rich gallium oxide coated with Pt nanoparticles (Vo-rich Pt/Ga2O3), CO2 is photocatalytically reduced to CO, with a highly enhanced CO evolution rate (21.0 μmol·h-1) compared to those on Vo-poor Pt/Ga2O3 (3.9 μmol·h-1) and Pt/TiO2(P25) (6.7 μmol·h-1). We demonstrate that the Vo leads to improved CO2 adsorption and separation of the photoinduced charges on Pt/Ga2O3, thus enhancing the photocatalytic activity of Pt/Ga2O3. Rational fabrication of an Vo is thereby an attractive strategy for developing efficient catalysts for photocatalytic CO2 reduction.
Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.
Yin, G.; Nishikawa, M.; Nosaka, Y.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 2015, 9, 2111-2119.
Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372-7408.
Singh, V.; Beltran, I. J. C.; Ribot, J. C.; Nagpal, P. Photocatalysis deconstructed: Design of a new selective catalyst for artificial photosynthesis. Nano Lett. 2014, 14, 597-603.
Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607-4626.
Yuan, L.; Xu, Y. -J. Photocatalytic conversion of CO2 into value-added and renewable fuels. Appl. Surf. Sci. 2015, 342, 154-167.
Liu, S. Q.; Tang, Z. -R.; Sun, Y. G.; Colmenares, J. C.; Xu, Y. -J. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015, 44, 5053-5075.
Zhang, N.; Yang, M. -Q.; Liu, S. Q.; Sun, Y. G.; Xu, Y. -J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev. 2015, 115, 10307-10377.
Pan, X. Y.; Yang, M. -Q.; Fu, X. Z.; Zhang, N.; Xu, Y. -J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601-3614.
Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821-831.
Zhao, Y. F.; Chen, G. B.; Tong, B.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; Smith, L. J.; O'Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824-7831.
Shang, L.; Tong, B.; Yu, H. J.; Waterhouse, G. I. N.; Zhou, C.; Zhao, Y. F.; Tahir, M.; Wu, L. -Z.; Tung, C. -H.; Zhang, T. R. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Adv. Energy Mater. 2016, 6, 1501241.
Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; O'Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. , in press, DOI: 10.1002/aenm.201501974.
Tan, L. -L.; Ong, W. -J.; Chai, S. -P.; Goh, B. T.; Mohamed, A. R. Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B: Environ. 2015, 179, 160-170.
Lin, J. L.; Pan, Z. M.; Wang, X. C. Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustainable Chem. Eng. 2014, 2, 353-358.
Núñez, J.; de la Peña O'Shea, V. A.; Jana, P.; Coronado, J. M.; Serrano, D. P. Effect of copper on the performance of ZnO and ZnO1‒xNx oxides as CO2 photoreduction catalysts. Catal. Today 2013, 209, 21-27.
Teramura, K.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem. Phys. Lett., 2008, 467, 191-194.
Tsuneoka, H.; Teramura, K.; Shishido, T.; Tanaka, T. Adsorbed species of CO2 and H2 on Ga2O3 for the photocatalytic reduction of CO2. J. Phys. Chem. C 2010, 114, 8892-8898.
Liu, L. J.; Gao, F.; Zhao, H. L.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B: Environ. 2013, 134-135, 349-358.
Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang, D.; Ye, J. Leaf- architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667.
Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543-556.
Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013, 6, 562-577.
Park, H. -A.; Choi, J. H.; Choi, K. M.; Lee, D. K.; Kang, J. K. Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 2012, 22, 5304-5307.
Teramura, K.; Wang, Z.; Hosokawa, S.; Sakata, Y.; Tanaka, T. A doping technique that suppresses undesirable H2 evolution derived from overall water splitting in the highly selective photocatalytic conversion of CO2 in and by water. Chem. —Eur. J. 2014, 20, 9906-9909.
Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem. Commun. 1997, 841-842.
Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J. Chem. Soc. Faraday Trans. 1998, 94, 1875-1880.
Kohno, Y.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of CO2 with H2 over ZrO2: A study on interaction of hydrogen with photoexcited CO2. Phys. Chem. Chem. Phys. 2000, 2, 2635-2639.
Kohno, Y.; Ishikawa, H.; Tanaka, T.; Funabiki, T.; Yoshida, S. Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys. Chem. Chem. Phys. 2001, 3, 1108- 1113.
Teramura, K.; Tanaka, T.; Ishikawa, H.; Kohno, Y.; Funabiki, T. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J. Phys. Chem. B 2004, 108, 346-354.
Teramura, K.; Okuoka, S. -I.; Tsuneoka, H.; Shishido, T.; Tanaka, T. Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Appl. Catal. B: Environ. 2010, 96, 565-568.
Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115- 13118.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 13089-13092.
Vincent, J.; Guillot-Noël, O.; Binet, L.; Aschehoug, P.; Le Du, Y.; Beaudoux, F.; Goldner, P. Electron paramagnetic resonance and optical spectroscopy of Er-doped β-Ga2O3. J. Appl. Phys. 2008, 104, 033519.
Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826-6829.
Yuan, Y. P.; Du, W. M.; Qian, X. F. ZnxGa2O3+x (0 ≤ x ≤ 1) solid solution nanocrystals: Tunable composition and optical properties. J. Mater. Chem. 2012, 22, 653-659.
Pan, Y. -X.; Liu, C. -J.; Mei, D. H.; Ge, Q. F. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on β-Ga2O3(100). Langmuir 2010, 26, 5551-5558.
Xu, Y. -J.; Li, J. -Q.; Zhang, Y. -F.; Chen, W. -K. The adsorption and dissociation of Cl2 on the MgO (001) surface with vacancies: Embedded cluster model study. J. Chem. Phys. 2004, 120, 8753-8760.
Di Valentin, C.; Pacchioni, G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. Acc. Chem. Res. 2014, 47, 3233-3241.
Ogale, S. B. Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 2010, 22, 3125-3155.
Song, C. P.; Wu, D. Q.; Zhang, F.; Liu, P.; Lu, Q. H.; Feng, X. L. Gemini surfactant assisted synthesis of two-dimensional metal nanoparticles/graphene composites. Chem. Commun. 2012, 48, 2119-2121.
Pan, Y. -X.; Zhuang, H. Q.; Hong, J. D.; Fang, Z.; Liu, H.; Liu, B.; Huang, Y. Z.; Xu, R. Cadmium sulfide quantum dots supported on gallium and indium oxide for visible- light-driven hydrogen evolution from water. ChemSusChem 2014, 7, 2537-2544.
Han, Y.; Liu, C. -J.; Ge, Q. F. Interaction of Pt clusters with the anatase TiO2(101) surface: A first principles study. J. Phys. Chem. B 2006, 110, 7463-7472.
Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 53, 1034-1038.
Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst- loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863- 20868.
Pan, Y. -X.; Liu, C. -J.; Wiltowski, T. S.; Ge, Q. F. CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: A density functional study. Catal. Today 2009, 147, 68-76.
Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600-7603.
Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G., Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798-801.