Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
5-hydroxymethylcytosine (5-hmC) is an important epigenetic derivative of cytosine and quantitative detection of 5-hmC could be used as a reliable biomarker for a variety of human diseases. Current technologies used in 5-hmC detection are complicated and time/cost inefficient. In this work, we report the first application of antibody-functionalized carbon nanotube field-effect transistors (CNT-FETs) in quantitative detection of 5-hmC from mouse tissues. This method achieves facile and ultra-sensitive 5-hmC detection based on electrical performance device and avoids complicated processing for DNA samples. The 5-hmC content percentages of normal mouse cerebrum, cerebellum, spleen, lung, liver, and heart samples presented in the genomic DNA were measured as 0.653, 0.573, 0.002, 0.020, 0.076, and 0.009, respectively, which is consistent with previous reports. This technology could be developed into facile routine 5-hmC monitoring devices for clinic human disease diagnoses.
Wyatt, G. R.; Cohen, S. S. A new pyrimidine base from bacteriophage nucleic acids. Nature 1952, 170, 1072-1073.
Penn, N. W.; Suwalski, R.; O'Riley, C.; Bojanowski, K.; Yura, R. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J. 1972, 126, 781-790.
Kriaucionis, S.; Heintz, N. The nuclear DNA base 5- hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324, 929-930.
Tahiliani, M.; Koh, K. P.; Shen, Y. H.; Pastor, W. A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L. M.; Liu, D. R.; Aravind, L. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324, 930-935.
Li, W. W.; Liu, M. Distribution of 5-hydroxymethylcytosine in different human tissues. J. Nucleic Acids. 2011, 2011, 870726.
Feinberg, A. P.; Ohlsson, R; Henikoff, S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet. 2006, 7, 21-33.
Suzuki, M. M.; Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev. Genet. 2008, 9, 465-476.
Kroeze, L. I.; van der Reijden, B. A.; Jansen, J. H. 5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer. Biochim. Biophys. Acta 2015, 1855, 144-154.
Szulwach, K. E.; Li, X. K.; Li, Y. J.; Song, C. X.; Wu, H.; Dai, Q.; Irier, H.; Upadhyay, A. K.; Gearing, M.; Levey, A. I. et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 2011, 14, 1607-1616.
Sherwani, S. I.; Khan, H. A. Role of 5-hydroxymethylcytosine in neurodegeneration. Gene 2015, 570, 17-24.
Al-Mahdawi, S.; Virmouni, S. A.; Pook, M. A. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases. Front. Neurosci. 2014, 8, 397.
Clark, S. J.; Harrison, J.; Paul, C. L.; Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994, 22, 2990-2997.
Cokus, S. J.; Feng, S. H.; Zhang, X. Y.; Chen, Z. G.; Merriman, B.; Haudenschild, C. D.; Pradhan, S.; Nelson, S. F.; Pellegrini, M.; Jacobsen, S. E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008, 452, 215-219.
Le, T.; Kim, K. P; Fan, G. P.; Faull, K. F. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal. Biochem. 2011, 412, 203-209.
Globisch, D.; Münzel, M.; Müller, M.; Michalakis, S.; Wagner, M.; Koch, S.; Brückl, T.; Biel, M.; Carell, T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010, 5, e15367.
Ito, S.; Shen, L.; Dai, Q.; Wu, S. C.; Collins, L. B.; Swenberg, J. A.; He, C.; Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333, 1300-1303.
Song, C. X.; Szulwach, K. E.; Fu, Y.; Dai, Q.; Yi, C. Q.; Li, X. K.; Li, Y. J.; Chen, C. H.; Zhang, W.; Jian, X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2011, 29, 68-72.
Pastor, W. A.; Pape, U. J.; Huang, Y.; Henderson, H. R.; Lister, R.; Ko, M.; McLoughlin, E. M.; Brudno, Y.; Mahapatra, S.; Kapranov, P. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 2011, 473, 394-397.
Szwagierczak, A.; Bultmann, S.; Schmidt, C. S.; Spada, F.; Leonhardt, H. Sensitive enzymatic quantification of 5- hydroxymethylcytosine in genomic DNA. Nucleic Acids Res. 2010, 38, e181.
Terragni, J.; Bitinaite, J.; Zheng, Y.; Pradhan, S. Biochemical characterization of recombinant β-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. Biochemistry 2012, 51, 1009-1019.
Kinney, S. M.; Chin, H. G.; Vaisvila, R.; Bitinaite, J.; Zheng, Y.; Estève, P. O.; Feng, S. H.; Stroud, H.; Jacobsen, S. E.; Pradhan, S. Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J. Biol. Chem. 2011, 286, 24685-24693.
Höbartner, C. Enzymatic labeling of 5-hydroxymethylcytosine in DNA. Angew. Chem., Int. Ed. 2011. 50, 4268-4270
Harris. P. J. F. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century; Cambridge University Press: Cambridge, 2001.
Dai, H. J. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218-241.
Katz, E.; Willner, I. Biomolecule functionalized carbon nanotubes: Applications in nanobioelectronics. ChemPhysChem 2004, 5, 1084-1104.
Daniel, S.; Rao, T. P.; Rao, K. S.; Rani, S. U.; Naidu, G. R. K.; Lee, H. Y.; Kawai, T. A review of DNA functionalized/ grafted carbon nanotubes and their characterization. Sens. Act. B 2007, 122, 672-682.
Drouvalakis, K. A.; Bangsaruntip, S.; Wolfgang, H.; Kozar, L. G.; Utz, P. J.; Dai, H. J. Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum. Biosens. Bioelectron. 2008, 23, 1413-1421.
Shim, M.; Kam, N. W. S.; Chen, R.; Li, Y. M.; Dai, H. J. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002, 2, 285-288.
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.
Byon, H. R.; Choi, H. C. Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J. Am. Chem. Soc. 2006, 128, 2188-2189.
Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim, W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984-4989.
Li, C.; Curreli, M.; Lin, H.; Lei, B.; Ishikawa, F. N.; Datar, R.; Cote, R. J.; Thompson, M. E.; Zhou, C. W. Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 12484-12485.
Park, D. W.; Kim, Y. H.; Kim, B. S.; So, H. M.; Won, K.; Lee, J. O; Kong, K. J.; Chang, H. Detection of tumor markers using single-walled carbon nanotube field effect transistors. J. Nanosci. Nanotechnol. 2006, 6, 3499-3502.
Takeda, S.; Sbagyo, A.; Sakoda, Y.; Ishii, A.; Sawamura, M.; Sueoka, K.; Kida, H.; Mukasa, K.; Matsumoto, K. Application of carbon nanotubes for detecting anti-hemagglutinins based on antigen-antibody interaction. Biosens. Bioelectron. 2005, 21, 201-205.
Veetil, J. V.; Ye, K. M. Development of immunosensors using carbon nanotubes. Biotechnol. Prog. 2007, 23, 517-531.
Liu, Z.; Zhao, J. W.; Xu, W. Y.; Qian, L.; Nie, S. H.; Cui, Z. Effect of surface wettability properties on the electrical properties of printed carbon nanotube thin-film transistors on SiO2/Si substrates. ACS Appl. Mater. Interfaces 2014, 6, 9997-10004.
Maehashi, K.; Katsura, T.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 2007, 79, 782-787.
Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285-4291.
Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C.; Sadler, P. J. Immobilization of small proteins in carbon nanotubes: High-resolution transmission electron microscopy study and catalytic activity. J. Chem. Soc., Chem. Commun. 1995, 1803-1804.
Tsang, S. C.; Guo, Z. J.; Chen, Y. K.; Green, M. L. H.; Hill, H. A. O.; Hambley, T. W.; Sadler, P. J. Immobilization of platinated and iodinated oligonucleotides on carbon nanotubes. Angew. Chem., Int. Ed. 1997, 36, 2198-2200.
Guo, Z. J.; Sadler, P. J.; Tsang, S. C. Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv. Mater. 1998, 10, 701-703.
Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, V.; Ebbeson, T. W.; Mioskowski, C. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem., Int. Ed. 1999, 38, 1912-1915.
Chen, R. J.; Zhang, Y. G.; Wang, D. W.; Dai, H. J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838-3839.
Lee, C. S.; Baker, S. E.; Marcus, M. S.; Yang, W. S.; Eriksson, M. A.; Hamers, R. J. Electrically addressable biomolecular functionalization of carbon nanotube and carbon nanofiber electrodes. Nano Lett. 2004, 4, 1713-1716.
Hermanson, G. T. Bioconjugate Techniques; Academic Press: San Diego, 1996.
Thordarson, P.; Atkin, R.; Kalle, W. H. J; Warr, G. G.; Braet, F. Developments in using scanning probe microscopy to study molecules on surfaces—From thin films and single- molecule conductivity to drug-living cell interactions. ChemInform 2006, 37, DOI: 10.1002/chin.200639277.
Katz, E. Application of bifunctional reagents for immobilization of proteins on a carbon electrode surface: Oriented immobilization of photosynthetic reaction centers. J. Electroanal. Chem. 1994, 365, 157-164.
Jaegfeldt, H.; Kuwana, T.; Johansson, G. Electrochemical stability of catechols with a pyrene side chain strongly adsorbed on graphite electrodes for catalytic oxidation of dihydronicotinamide adenine dinucleotide. J. Am. Chem. Soc. 1983, 105, 1805-1814.