AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Superior electrocatalytic activity of mesoporous Au film templated from diblock copolymer micelles

Cuiling Li1( )Bo Jiang1,2Hungru Chen3Masataka Imura1Liwen Sang1Victor Malgras1Yoshio Bando1Tansir Ahamad4Saad M. Alshehri4( )Satoshi Tominaka1Yusuke Yamauchi1,2,4( )
World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, TsukubaIbaraki305-0044Japan
Faculty of Science and Engineering, Waseda University, 3-4-1 OkuboShinjuku, Tokyo169-8555Japan
Department of ChemistryUniversity of Bath, Bath, BA2 7AYUK
Department of ChemistryCollege of ScienceKing Saud UniversityRiyadh11451Saudi Arabia
Show Author Information

Graphical Abstract

Abstract

Mesoporous Au films consisting of a network of interconnected Au ligaments around ultra-large pores were found to exhibit a promising electrocatalytic activity towards sluggish reactions. Mesoporous Au films with pore sizes up to 25 nm were successfully fabricated using a polymeric micelle approach. A superior catalytic activity of the mesoporous Au films towards methanol oxidation was confirmed, which was thoroughly analyzed and compared with that of other Au materials. An intrinsic investigation on the high catalytic activity revealed that the superior performance of the as-prepared mesoporous Au film was related to its unique atomic structures around the mesopores with well-crystallized facets and several step/kink sites on the Au surfaces. These findings showcase a strategic and feasible design for preparing highly active Au-based catalysts that could be used as promising candidates in electrocatalytic applications.

Electronic Supplementary Material

Download File(s)
nr-9-6-1752_ESM.pdf (2.1 MB)

References

1

Malgras, V.; Ji, Q. M.; Kamachi, Y.; Mori, T.; Shieh, F. K.; Wu, K. C. W.; Ariga, K.; Yamauchi, Y. Templated synthesis for nanoarchitectured porous materials. Bull. Chem. Soc. Jpn. 2015, 88, 1171-1200.

2

Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982-986.

3

Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Carirns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S. Q.; Space, B.; Wojtas, L. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80-84.

4

Jiang, H. L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J. Am. Chem. Soc. 2009, 131, 11302-11303.

5

Wu, M. Y.; Meng, Q. S.; Chen, Y.; Du, Y. Y.; Zhang, L. X.; Li, Y. P.; Zhang, L. L.; Shi, J. L. Large-pore ultrasmall mesoporous organosilica nanoparticles: Micelle/precursor Co-templating assembly and nuclear-targeted gene delivery. Adv. Mater. 2015, 27, 215-222.

6

Liu, Q. N.; Sun, Z. Q.; Dou, Y. H.; Kim, J. H.; Dou, S. X. Two-step self-assembly of hierarchically-ordered nanostructures. J. Mater. Chem. A 2015, 3, 11688-11699.

7

Malgras, V.; Ataee-Esfahani, H.; Wang, H. J.; Jiang, B.; Li, C. L.; Wu, K. C. W.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for mesoporous metals. Adv. Mater. 2016, 28, 993-1010.

8

Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896-8943.

9

Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439-2450.

10

Yang, S. C.; Luo, X. Mesoporous nano/micro noble metal particles: Synthesis and applications. Nanoscale 2014, 6, 4438-4457.

11

Yamauchi, Y.; Tonegawa, A.; Komatsu, M.; Wang, H. J.; Wang, L.; Nemoto, Y.; Suzuki, N.; Kuroda, K. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance. J. Am. Chem. Soc. 2012, 134, 5100-5109.

12

Wei, J.; Wang, H.; Deng, Y. H.; Sun, Z. K.; Shi, L.; Tu, B.; Luqman, M.; Zhao, D. Y. Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J. Am. Chem. Soc. 2011, 133, 20369-20377.

13

Tang, J.; Liu, J.; Li, C. L.; Li, Y. Q.; Tade, M. O.; Dai, S.; Yamauchi, Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem., Int. Ed. 2015, 54, 588-593.

14

Jiang, B.; Li, C. L.; Imura, M.; Tang, J.; Yamauchi, Y. Multimetallic mesoporous spheres through surfactant-directed synthesis. Adv. Sci. 2015, 2, 1500112.

15

Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Dou, S. X. Improved photovoltaic performance of dye- sensitized solar cells with modified self-assembling highly ordered mesoporous TiO2 photoanodes. J. Mater. Chem. 2012, 22, 11711-11719.

16

Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169-172.

17

Wang, H. J.; Jeong, H. Y.; Imura, M.; Wang, L.; Radhakrishnan, L.; Fujita, N.; Castle, T.; Terasaki, O.; Yamauchi, Y. Shape- and size-controlled synthesis in hard templates: Sophisticated chemical reduction for mesoporous monocrystalline platinum nanoparticles. J. Am. Chem. Soc. 2011, 133, 14526-14529.

18

Kleitz, F.; Choi, S. H.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 2136-2137.

19

Wang, H. J.; Wang, L.; Sato, T.; Sakamoto, Y.; Tominaka, S.; Miyasaka, K.; Miyamoto, N.; Nemoto, Y.; Terasaki, O.; Yamauchi, Y. Synthesis of mesoporous Pt films with tunable pore sizes from aqueous surfactant solutions. Chem. Mater. 2012, 24, 1591-1598.

20

Huang, X. Q.; Li, Y. J.; Chen, Y.; Zhou, E. B.; Xu, Y. X.; Zhou, H. L.; Duan, X. F.; Huang, Y. Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew. Chem., Int. Ed. 2013, 52, 2520-2524.

21

Li, C. L.; Jiang, B.; Miyamoto, N.; Kim, J. H.; Malgras, V.; Yamauchi, Y. Surfactant-directed synthesis of mesoporous Pd films with perpendicular mesochannels as efficient electrocatalysts. J. Am. Chem. Soc. 2015, 137, 11558-11561.

22

Li, C. L.; Sato, T.; Yamauchi, Y. Size-controlled synthesis of mesoporous palladium nanoparticles as highly active and stable electrocatalysts. Chem. Commun. 2014, 50, 11753- 11756.

23

Ataee-Esfahani, H.; Imura, M.; Yamauchi, Y. All-metal mesoporous nanocolloids: Solution-phase synthesis of core-shell Pd@Pt nanoparticles with a designed concave surface. Angew. Chem., Int. Ed. 2013, 52, 13611-13615.

24

Wang, L.; Nemoto, Y.; Yamauchi, Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 2011, 133, 9674-9677.

25

Li, C. L.; Dag, Ö.; Dao, T. D.; Nagao, T.; Sakamoto, Y.; Kimura, T.; Terasaki, O.; Yamauchi, Y. Electrochemical synthesis of mesoporous gold films toward mesospace- stimulated optical properties. Nat. Commun. 2015, 6, 6608.

26

Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang, J. H. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 1997, 278, 838-840.

27

Warren, S. C.; Messina, L. C.; Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.; Wiesner, U. Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 2008, 320, 1748-1752.

28

Li, Y. Q.; Bastakoti, B. P.; Malgras, V.; Li, C. L.; Tang, J.; Kim, J. H.; Yamauchi, Y. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes. Angew. Chem., Int. Ed. 2015, 54, 11073-11077.

29

Funakawa, A.; Yamanaka, I.; Takenaka, S.; Otsuka, K. Selectivity control of carbonylation of methanol to dimethyl oxalate and dimethyl carbonate over gold anode by electrochemical potential. J. Am. Chem. Soc. 2004, 126, 5346-5347.

30

Yin, H. M.; Zhou, C. Q.; Xu, C. X.; Liu, P. P.; Xu, X. H.; Ding, Y. Aerobic oxidation of D-glucose on support-free nanoporous gold. J. Phys. Chem. C 2008, 112, 9673-9678.

31

Rodriguez, P.; Garcia-Araez, N.; Koper, M. T. M. Self- promotion mechanism for CO electrooxidation on gold. Phys. Chem. Chem. Phys. 2010, 12, 9373-9380.

32

Stoffelsma, C.; Rodriguez, P.; Garcia, G.; Garcia-Araez, N.; Strmcnik, D.; Marković, N. M.; Koper, M. T. M. Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations. J. Am. Chem. Soc. 2010, 132, 16127-16133.

33

Xu, B. J.; Liu, X. Y.; Haubrich, J.; Madix, R. J.; Friend, C. M. Selectivity control in gold-mediated esterification of methanol. Angew. Chem., Int. Ed. 2009, 48, 4206-4209.

34

Zhong, G. -X.; Zhang, W. -X.; Sun, Y. -M.; Wei, Y. -Q.; Lei, Y.; Peng, H. -P.; Liu, A. -L.; Chen, Y. -Z.; Lin, X. -H. A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensor. Actuat. B: Chem. 2015, 212, 72-77.

35

Rodriguez, P.; Kwon, Y.; Koper, M. T. M. The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 2012, 4, 177-182.

36

Hernández, J.; Solla-Gullón, J.; Herrero, E.; Aldaz, A.; Feliu, J. M. Methanol oxidation on gold nanoparticles in alkaline media: Unusual electrocatalytic activity. Electrochim. Acta 2006, 52, 1662-1669.

37

Pedireddy, S.; Lee, H. K.; Tjiu, W. W.; Phang, I. Y.; Tan, H. R.; Chua, S. Q.; Troadec, C.; Ling, X. Y. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance. Nat. Commun. 2014, 5, 4947.

38

Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C 2007, 111, 10382-10388.

39

Dang, N. M.; Zhao, W. -W.; Yusa, S. -I.; Noguchi, H.; Nakashima, K. Cobalt oxide hollow nanoparticles as synthesized by templating a tri-block copolymer micelle with a core-shell-corona structure: A promising anode material for lithium ion batteries. New J. Chem. 2015, 39, 4726-4730.

40

Wang, X. -B.; Lo, T. -Y.; Hsueh, H. -Y.; Ho, R. -M. Double and single network phases in polystyrene-block-poly(L- lactide) diblock copolymers. Macromolecules 2013, 46, 2997-3004.

41

Tian, N.; Zhou, Z. -Y.; Sun, S. -G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.

42

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2013, 52, 12337-12340.

43

Ma, Y. Y.; Kuang, Q.; Jiang, Z. Y.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem., Int. Ed. 2008, 47, 8901-8904.

44

Wu, H. -L.; Tsai, H. -R.; Huang, Y. -T.; Lao, K. -U.; Liao, C. -W.; Chung, P. -J.; Huang, J. -S.; Chen, I. -C.; Huang, M. H. A comparative study of gold nanocubes, octahedra, and rhombic dodecahedra as highly sensitive SERS substrates. Inorg. Chem. 2011, 50, 8106-8111.

45

Tominaka, S. Facile synthesis of nanostructured gold for microsystems by the combination of electrodeposition and dealloying. J. Mater. Chem. 2011, 21, 9725-9730.

46

Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.

47

Chen, Q. -S.; Zhou, Z. -Y.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Feliu, J. M.; Sun, S. -G. Significantly enhancing catalytic activity of tetrahexahedral Pt nanocrystals by Bi adatom decoration. J. Am. Chem. Soc. 2011, 133, 12930-12933.

48

Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. N. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 2773-2777.

49

Pessoa, A. M.; Fajín, J. L. C.; Gomes, J. R. B.; Cordeiro, M. N. D. S. Cluster and periodic DFT calculations of adsorption of hydroxyl on the Au(hkl) surfaces. J. Mol. Struc. : THEOCHEM 2010, 946, 43-50.

50

Vassilev, P.; Koper, M. T. M. Electrochemical reduction of oxygen on gold surfaces:  A density functional theory study of intermediates and reaction paths. J. Phys. Chem. C 2007, 111, 2607-2613.

51

Kwon, Y.; Lai, S. C. S.; Rodriguez, P.; Koper, M. T. M. Electrocatalytic oxidation of alcohols on gold in alkaline media: Base or gold catalysis? J. Am. Chem. Soc. 2011, 133, 6914-6917.

52

Gellman, A. J.; Dai, Q. Mechanism of β-hydride elimination in adsorbed alkoxides. J. Am. Chem. Soc. 1993, 115, 714-722.

53

Borkowska, Z.; Tymosiak-Zielinska, A.; Shul, G. Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta 2004, 49, 1209-1220.

54

Ivanov, I.; Vidaković, T. R.; Sundmacher, K. The influence of a self-assembled monolayer on the activity of rough gold for glucose oxidation. Electrochem. Commun. 2008, 10, 1307-1310.

55

Rodriguez, P.; Feliu, J. M.; Koper, M. T. M. Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochem. Commun. 2009, 11, 1105-1108.

56

Chen, A. C.; Lipkowski, J. Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode. J. Phys. Chem. B 1999, 103, 682-691.

Nano Research
Pages 1752-1762
Cite this article:
Li C, Jiang B, Chen H, et al. Superior electrocatalytic activity of mesoporous Au film templated from diblock copolymer micelles. Nano Research, 2016, 9(6): 1752-1762. https://doi.org/10.1007/s12274-016-1068-z

781

Views

46

Crossref

N/A

Web of Science

45

Scopus

1

CSCD

Altmetrics

Received: 25 December 2015
Revised: 05 March 2016
Accepted: 07 March 2016
Published: 21 April 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return